Instant Connect Gas Sampling Valve Module Introducing a New Flexibility in Gas Sampling for GC and GC-MS

Stefano Pelagatti, Paolo Magni, and Fausto Pigozzo Thermo Fisher Scientific, Milan, Italy

Overview

Purpose: We present a newly developed, Instant Connect gas sampling valve (GSV) module for the Thermo Scientific[™] TRACE[™] 1300 Series Gas Chromatograph (GC).

Gas injection through a gas sampling valve is one of the most reliable and wide-spread techniques to inject a vapor sample into a gas chromatographic system. Today, development of this technology relies on the attempt of different valve suppliers to improve material reaching higher temperature and/or longer life time of mobile parts, reduce internal volumes for improving chromatographic performance and reduce overall valve size.

Introduction

This paper describes a new modular concept that has been undertaken to integrate the latest valve technology, into a hand-held plug-in module, fully incorporating heating control of the valve, miniaturized pneumatic circuits for carrier gas supply and split, as well as valve backflush to the vent. This modular design allows a new level of instrument flexibility, where inlets and/or detectors selection is based on the application in use, and can be changed in a matter of a few minutes by the operator when a new analytical need or application requires different injector and/or detectors.

In addition to improved technical performance in terms of injection repeatability and stability, this work shows the simplicity and flexibility in configuration settings provided by this instant connect modular design.

Without further hardware complexity, the gas sampling valve module can be set to back flush to vent the undesired part of sample, therefore offering an easy and integrated set-up for more complex analysis. Data showing performance of this solution are illustrated and discussed.

Methods

For the work, a TRACE 1300 Series GC equipped with an Instant Connect Gas Sampling Valve (GSV) module (Figure 1) as injection port and a TCD detector module in series with a FID detector module has been used. In Figure 2, the GC setup is shown. Moreover, for the determination of N2O in ambient air, the ECD detector have been used.

FIGURE 1. Instant Connect GSV module.

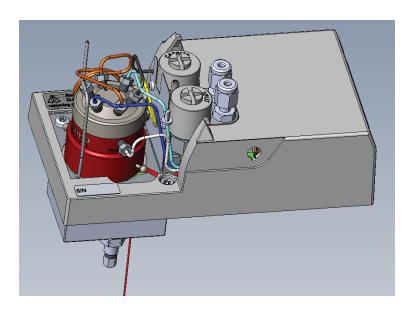
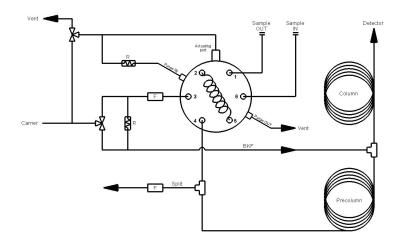


FIGURE 2. TRACE 1300 GC equipped with GSV module and FID-TCD in series.


The GSV module is provided with all the electronics and pneumatics built into the module (Figure 3), including the parts necessary for the backflush option.

The GSV module is a thermostatted (up to 150 °C) 6-ports membrane valve. The valve has a constant purge of helium in order to avoid any possible air diffusion through the membrane, particularly critical when used in combination of oxygen sensitive detectors.

The channels in contact with the sample are fully surfacedeactivated in order to prevent corrosion or absorption phenomena, especially for sulfur components at low concentration levels.

Two charcoal filters, one on the carrier line and the other on the split line, can be replaced without any intervention on the valve connections.

FIGURE 3. GSV module pneumatics.

The performance of the new GSV module has been evaluated using a certified gas mix (from S.I.A.D. S.p.ATM). The composition of the tank is described in the following table:

TABLE 1. Gas mix.

		. The column used is:				
Gas	% Volume/Volume	Thermo Scientific™				
Oxygen	1.08	TracePLOT TG-BOND M				
Hydrogen	2.99	Sieve 5A				
Methane	2.99	30 m, 0.53 mm, 50 μm.				
CO2	3.00					
CO	3.00	The precolumn is:				
N2	3.02	Thermo Scientific™				
Helium	Remaining part	TracePLOT TG-BOND Q,				
		5 m, 0.53 mm, 20 μm.				

Such a precolumn has been chosen in order to allow a precise backflush cut of unwanted portion of the mix. The AFPTM diaphragm is equipped with a 250 loop made by SilcoNertTM coated stainless steel tube.

Results

The loop have been loaded in continuous way with gas mix through the *Sample In* port of the module with a flow of 5 mL/min. The sampling occurred automatically whenever the GC was ready to inject.

The chromatograms obtained with the FID and TCD are presented in Figure 4. The method used is listed in Table 2. The backflush valve was actuated after 1.6 minutes in order to preserve the molecular sieve column, avoiding the entrance of CO2. The backflush time optimization requires few trials: it starts with an early reverse flow actuation, then the actuation start time is incremented until the last eluting peak before the undesired component is acquired in the chromatogram.

The duration of sampling valve activation was 0.5 min, long enough to transfer completely the components from the loop into the column, considering the low dead volumes of the module.

FIGURE 4. Standard gas mix chromatograms.

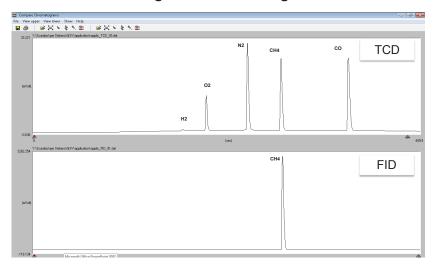


TABLE 2. GC analytical method.

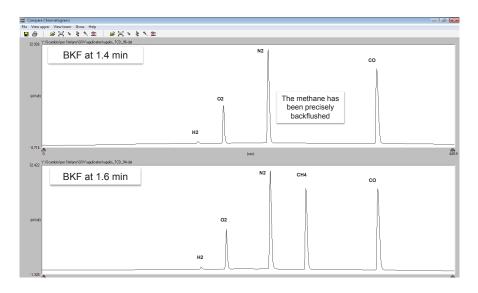
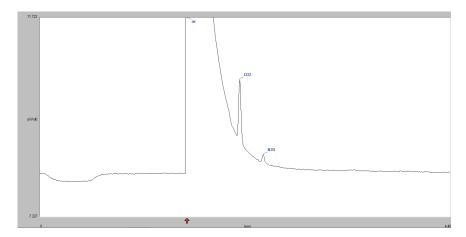

Oven Method	FID - Front Method
Initial temperature: 30.0 °C	Temperature: 250 °C
Initial hold time: 2.00 min	Ignition threshold: 1.0 pA
Number of ramps: 1	Air flow: 350.0 mL/min
Ramp rate: 20.0 °C/min	Hydrogen flow: 35.0 mL/min
Final temperature: 100.0 °C	Makeup gas flow: 40.0 mL/min
Ramp hold ti 2.00 min	TCD - Back Method
GSV - Front Method	Temperature: 100 °C
S/SL mode Split	Filament power on: Yes
Temperature enable: On	Filament temperature: 150 °C
Temperature: 120 °C	Reference gas enable: On
Split flow enable: On	Reference gas flow: 1.0 mL/min
Split flow: 5.0 mL/min	Carrier source: Front
GSV inj start time: 0.00 min	Acquire data: Yes
GSV inj duration: 0.50 min	Signal process: Standard Peaks
Carrier mode: Constant Flow	Negative polarity: No
Carrier flow 5.000 mL/min	Prep-run - TCD (Back): Autozero

TABLE 3. Peak area and retention times repeatability.

area	H2	O2	N2	CH4	СО	RT	H2	O2	N2	CH4	СО
inj1	13266	250735	759165	660911	780563	inj1	2.898	3.355	4.150	4.800	6.105
inj2	13125	248391	749634	653404	772619	inj2	2.898	3.355	4.150	4.798	6.103
inj3	13225	247587	748704	652229	771518	inj3	2.900	3.357	4.150	4.798	6.103
inj4	13175	249261	752844	655866	775850	inj4	2.895	3.352	4.147	4.795	6.100
inj5	13197	248333	749910	653122	773409	inj5	2.898	3.355	4.148	4.797	6.102
inj6	13182	248458	750457	654182	774973	inj6	2.897	3.353	4.150	4.798	6.103
inj7	13200	249554	753400	656871	776464	inj7	2.898	3.355	4.150	4.798	6.103
inj8	13159	248388	750503	654086	774620	inj8	2.900	3.357	4.152	4.800	6.105
inj9	13091	247615	748039	652954	771570	inj9	2.898	3.355	4.150	4.798	6.103
inj10	13107	247545	749047	653151	771920	inj10	2.898	3.355	4.150	4.798	6.103
inj11	13195	249232	754607	658199	777982	inj11	2.898	3.355	4.150	4.797	6.100
inj12	13019	245449	743166	647715	765810	inj12	2.902	3.357	4.150	4.798	6.100
inj13	13169	246423	746294	650646	769293	inj13	2.897	3.353	4.148	4.797	6.100
inj14	13191	249165	753737	657913	778070	inj14	2.898	3.355	4.150	4.798	6.102
inj15	13126	247865	750023	654019	773525	inj15	2.897	3.353	4.150	4.798	6.102
inj16	13091	247573	748145	652019	770972	inj16	2.900	3.357	4.152	4.798	6.103
inj17	13161	249634	754156	656949	777327	inj17	2.897	3.353	4.148	4.797	6.100
inj18	13140	247480	749380	653754	773162	inj18	2.898	3.355	4.150	4.797	6.102
inj19	12986	247612	747750	651951	770890	inj19	2.898	3.355	4.150	4.797	6.100
inj20	13210	249962	754972	658039	778727	inj20	2.900	3.355	4.152	4.798	6.102
inj21	12985	246524	743554	648850	767180	inj21	2.897	3.353	4.150	4.797	6.102
inj22	13153	249329	752502	656392	776874	inj22	2.898	3.355	4.150	4.798	6.102
inj23	13328	251266	758369	660696	782013	inj23	2.897	3.353	4.148	4.797	6.100
inj24	13213	250395	755861	658918	779669	inj24	2.897	3.353	4.148	4.795	6.098
inj25	13077	247541	749738	653407	773632	inj25	2.898	3.355	4.150	4.797	6.100
sd	81	1401	4013	3376	4060	sd (min)	0.001	0.001	0.001	0.001	0.002
RSD%	0.6	0.6	0.5	0.5	0.5	RSD%	0.05	0.04	0.03	0.03	0.03

The efficiency of the embedded backflush system has been tested using the same gas mix, but changing the backflush activation time (from 1.6 minutes to 1.4 minutes). The result evidences that a selective cut of the methane peak can be obtained, as showed in Figure 5.


FIGURE 5. Selectivity of the backflush cutting.

Using different detectors, columns and larger sampling loops, this on-line ambient monitoring can be used for various applications like continuous air pollution evaluation.

In Figure 6, an example of ambient air analysis performed using an ECD detector and TracePLOT TG-BOND Q phase column for the quantification of fractions of ppm of N2O is showed.

FIGURE 6. Continuous ambient air monitoring.

Conclusion

The new instant connect GSV module, easily installable on the TRACE 1300 series GC, has demonstrated to be a robust and reliable device for the detection and analysis of permanent gases or volatile compounds. The embedded backflush capability enables the protection of the column from unwanted components, reducing the analysis time and preserving the column lifetime.

www.thermoscientific.com

©2014 Thermo Fisher Scientific Inc. All rights reserved. ISO is a trademark of the International Standards Organization. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

Italy +39 02 950 591

400 650 5118

Denmark +45 70 23 62 60 Europe-Other +43 1 333 50 34 0 Finland +358 9 3291 0200 France +33 1 60 92 48 00 Germany +49 6103 408 1014 India +91 22 6742 9494

Japan +81 45 453 9100 Latin America +1 561 688 8700 Middle East +43 1 333 50 34 0 Netherlands +31 76 579 55 55 New Zealand +64 9 980 6700 Norway +46 8 556 468 00 Russia/CIS +43 1 333 50 34 0

Singapore +65 6289 1190 Spain +34 914 845 965 Sweden +46 8 556 468 00 Switzerland +41 61 716 77 00 UK +44 1442 233555 USA +1 800 532 4752

Thermo Fisher Scientific.

Austin, TX USA is ISO 9001:2008 Certified.

