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Introduction

Mass spectrometers coupled to liquid
chromatographs (LC/MS) have been widely utilized
for the identification and quantification of analytes in
complex samples. Thanks to the highly efficient ion
transmission through a dual-field converging
multipole ion guide (Cyclone ion guide), it was
possible to reduce the instrument footprint without
sacrificing analytical performance. The Cyclone ion
guide is the key component of Agilent Ultivo LC/MS
Triple Quadrupole and Agilent LC/MSD iQ Single
Quadrupole instruments.

Although many LC/MS applications are aimed at ions
with high m/z ratios, the recent emergence of
applications like pharmaceutical impurity detection
(Nitrosamines) and emerging contaminants
(PFAS/PFOA) calls for sensitive detection of ions with
low m/z ratios. Here, the mass dependention
transmission through Cyclone ion guide is evaluated.
Specifically, the transmission of low m/z ions is
evaluated and characterized.

Experimental

Cyclone ion guide

The Cyclone ion guide is between the skimmer and
quadrupole mass filter. It expands through three
pressure stages, with more than 1000-fold pressure
reduction.

As shown in Figure 1, the ion guide consists of one set
of inner hexapole and one set of outer hexapole. The
inner hexapole is geometrically twisted and tapered,
which enables phase space compression of ion beam.
The outer hexapole is also twisted and tapered,
covering the entrance half the ion guide.

Figure 1. Cyclone ion guide electrodes, shown top and
left. Outer rods are shown in blue. Inner rods are
shown in pink and maroon. The full cyclone assembly
is shown on the lower right.

Experimental

Variable frequency RF driver

Confining RF voltages are applied to both the inner
hexapole and the outer hexapole on the Cyclone ion
guide. As shown in Figure 2, applying two opposing
phases of RF voltage to the inner rods produce a
hexapole field. Applying an additional single phase RF
voltage to the outer rods creates a dodecapolar field
at the entrance of the ion guide.

Figure 2. Electric potential within cyclone rod structure
at one RF phase. Red is positive potential and blue is
negative potential.

The Cyclone ion guide is driven by variable frequency
RF voltage generators. The variable frequency drivers
each consist of a signal generator and broadband
power amplifier driving a tunable LC resonant voltage
step-up circuit. During operation, the signal generator
is set to the chosen frequency and then the resonant
circuit is manually tuned to that same frequency to
efficiently generate the required voltage.

lon transmission characterization

lon transmission through Cyclone ion guide was
characterized experimentally on Agilent LC/MSD iQ
Single Quadrupole mass spectrometer. Trace amount
of potassium acetate was spiked into Agilent ESI-L
tuning mix to provide stable ions with low m/z ratio.
Chemicals are introduced using the built-in Calibrant
Delivering System and ions are generated with
electrospray ion source.

Abundance of ions (with m/z 39, 118, 322, 622, 922,
and 1222) at unit resolution are recorded as function
of the amplitude of RF voltages on both inner
hexapole and outer hexapole. In addition, the
frequency of RF voltage on inner hexapole is also
evaluated.

Simulation

The gas flow and ion transmission through the
Cyclone ion guide is simulated by Computational Fluid
Dynamic (CFD) and Simlon, respectively.



Results and Discussion

Appropriate inner and outer RF voltages enables
efficient transmission of ions through cycle ion guide
for most applications.

Previous investigations suggested applying 9 MHz RF
voltages on Cyclone inner rods and applying 1 MHz RF
voltages on Cyclone outer rods provide high transmission
efficient for ions between m/z 100 and 1500. Figure 3
shows the ion abundance as function of the amplitude of
inner RF and outer RF.
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Figure 3. lon abundance as a function of inner and outer
RF amplitudes in cyclone ion guide. Deep red is maximum
abundance and deep blue is zero signal.

As shown in Figure 3, high ion transmission efficiency is
achieved when sufficient pseudo-potential is created by
combination of RF amplitudes applied to the inner and
outer rods. For ions with m/z above 100, single pair of RF
amplitudes can provide highly efficient ion transmission.
This feature of Cyclone ion guide simplifies the
optimization and operation of the instrument.

Applications aiming at low m/z (<100) ions may benefit
from different operating parameters.

lon with m/z below 100 behaves slightly different. When
high RF amplitude is applied to either inner rods or outer
rods, the ions are not able to overcome the non-adiabatic
pseudo-potential resulting in loss of ions. This can be
seen from both experimental and theoretical results.

In order to enhance transmission of low m/z ions, a
different set of operating parameters might be necessary.
As show in Figure 5, with lower RF amplitude applied to
inner rods, the abundance of m/z 39 can improve more
than 100%. However, the enhanced transmission of m/z
39 is accompanied by reduction of other higher m/z ions.
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Figure 4. Mass dependent lon transmission at selected
RF amplitude based on experimental results and
simulation. (Acknowledgement to Kenneth R. Newton for
providing the simulation data.)
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Figure 5. lon abundance as function of RF amplitude
applied on the inner rods.



Results and Discussion

(a) Cyclone Inner RF — 9.5 MHz
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Figure 6. lon abundance as a function of inner (at frequency of 9.5 MHz, 9.0 MHz and 8.5 MHz) and outer (at frequency of
1.0 MHz) RF amplitude in cyclone ion guide. Deep red is maximum abundance and deep blue is zero signal.

Transmission of low m/z ions could benefit from RF :
; ; Conclusions
voltages with different frequency.

The combination of 9 MHz on inner rods and 1 MHz on « Cyclone ion guide allows reduction of instrument size
outer rods was selected based on transmission of ions without sacrificing performance.

above m/z 100. Figure 6 shows at higher frequency (9.5 « Application based tuning could further improve

MHz), transmission of low m/z ions is improved with high instrument performance for selected applications.
RF amplitude. However, it's still challenging to find one
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