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Introduction

Top-down electron capture dissociation (ECD) can be
more efficient for denatured protein samples. This is
due to larger electron capture cross sections for
higher charge state ions with unfolded protein
structures. However, proteins under denaturing
conditions also typically have a wide charge state
envelope, resulting in lower signal intensities for a
given charge state. To overcome this problem, we
have introduced a chemical charge stripping method
to lower the number of charge states with a hope to
maintain the unfolded protein structure. Charge
stripping occurs via micro-droplet reactions in the
electrospray ionization chamber. Concentration of the
charge state envelope into fewer peaks of higher
intensity provided for improved ECD fragmentation
and sequence coverage. Mechanistic insights were
obtained by application of ion mobility (IM) mass
spectrometry.

Experimental

Sample Preparation

Ubiquitin (bovine), Cytochrome C, Myoglobin, and
Carbonic anhydrase were purchased from Sigma
Aldrich (St. Louis, MO). NIST mAb was purchased
from NIST (Gaithersburg, MD). Denatured solutions of
1-5 uM protein concentration were prepared in 15%
acetonitrile (ACN) in water with 0.1 % formic acid (FA);
native solutions were in 100 uM ammonium acetate.
Intact mAbs were buffer exchanged with
corresponding buffers, using Amicon Ultra 0.5 mL 10
kDa centrifugal molecular weight cutoff filters (Sigma-
Aldrich, St. Louis, MO, USA). Working solutions of
intact mAbs were prepared at T mg/mL either in 100
MM ammonium acetate (native solution) or in 50%
ACN/water with 0.1% FA before introducing into the
mass spectrometer.

Data Analysis

Data processing was performed with IM MS
Browser and ExDViewer softwares (Agilent
Technologies, Inc., USA). ExDViewer allowed
determination of protein sequence coverage and
evaluation of the ECD efficiency based on ion
intensities for all isotopic peaks. ECD/IM
experiments were controlled and tuned with
imsReal Time software (Agilent Technologies, Inc.,
USA). Autotune procedure of ExDControl software
(Agilent Technologies, Inc., USA) was used for
tuning ExD cell in both MST and MS2 modes.

Experimental

Instrumental Analysis

ECD experiments were performed using both 6560
(Figure 1) and 6545XT AdvanceBio LC/Q-TOF (Agilent
Technologies, USA) mass spectrometers modified to
enable ECD by installation of a second
generation ExD cell (Agilent Technologies,
USA). The ExD cell consists of seven
electrostatic lens elements, two ring magnets,
and an electron emitting filament. All voltages
are supplied by a separate power supply
regulated by ExD Control software (Agilent
Technologies, USA). A dilute solution of charge
stripping reagent (dimethylaminopropylamine in
water, 1:10 v/v) was infused through the reference
nebulizer of the Dual Agilent Jet Stream (AJS)
electrospray ionization ion source at flow rates from
0.07 to 0.2 yL/min, depending on the desired charge
stripping level. Protein samples were infused through
the main nebulizer of Dual AJS source at a flow rate
of 5-10 uL/min. Proteins of different sizes from
ubiquitin to monoclonal antibodies (mAbs) were
studied with this approach. To find softer
conditions for ion spraying, the Agilent static
nanospray ion source was also used to
introduce the proteins under study.

Experiments on collisional activation prior to
ECD were conducted by applying a voltage
difference between capillary exit and the
fragmentor (in collision induced unfolding (CIU)
experiments) or by applying a collision voltage
in collision cell in the same way as in collision
induced dissociation (CID) experiments.

Figure 1. Schematic of Agilent 6560 IM Q-ToF
mass spectrometer with ECD cell shown in insert.




Results and Discussion

In-spray charge reduction in Dual AJS source using
dimethylaminopropylamine.

In the present work, intact proteins in denaturing solution,
were fragmented using ECD. All proteins were subjected
to proton stripping reactions with the charge stripping
reagent, dimethylaminopropylamine, prior to ECD. Proton
stripping level was controlled by ramping the flow rate of
reagent solution and could be stopped at the level with
required ECD efficiency. For denatured ubiquitin, for
example, the charge levels down to 4+, 3+ or 2+
precursors were produced (Figure 2).
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Figure 2. Charge reduction of denatured ubiquitin (A)
to the most prominent 4+ and 3+ charge states (B)
and product-ion ECD spectrum with complementary
100 V CID energy for 3+ precursor (C) showing 100%
sequence coverage.

ECD spectra of ubiquitin different structures.

Structural differences between protein ions, inferred from
the IM results, were correlated with the differences
observed in their ECD mass spectra. Presented below are
data for 6+ ubiquitin, but comprehensive data were
obtained for other ubiquitin charge states as well as for
other proteins mentioned in the Experimental. ECD
spectra of native ubiquitin correlated well with X-ray
crystallography data (see insert in Figure 3(A) with
ubiquitin B-factor taken from Reference 1).
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Figure 3. Drift time spectrum (top panel), ECD
spectrum (mid panel) and sequence coverage map
determined with the ExDViewer software (bottom
panel) for 6+ precursor of ubiquitin with native
structure (A) and partially unfolded gas-phase
structure (B). ECD spectrum for the intermediate gas-
phase structure (drift peak between 28-32 msec) was
also recorded but it is not included here.



Results and Discussion

lon mobility separation of protein charge states with different structures generated from native solutions and
denatured solution with charge stripping.

The structural changes that result from the charge-stripping reaction sprayed from denatured solutions and similar
charge states from native solutions were examined with IM mass spectrometry. These folding/unfolding processes were
found to be protein-size dependent. Structural differences between these ions, inferred from the IM results, were
correlated with the differences observed in their ECD mass spectra.
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Figure 6. Ubiquitin 8+ drift time (left panels) and CCS spectra

(right panels). The most compact structure (28 ms) disappears

becomes dominant structure,

Conclusions

« ECD with complementary collisional activation applied
for charge stripped proteins resulted in complete
sequence coverage for ubiquitin triply-charged state.

« Combined application of ECD and IM proved survival of
native structures for proteins as small as ubiquitin at
mass spectrometric conditions. It was shown that ECD
spectra for native structures matched well with liquid
(NMR) and X-ray structures of studied proteins.

 Charge stripping by microdroplet reaction of higher
charge state denatured proteins resulted in production
of unfolded structures of lower protein charge states
with high ECD efficiency.
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