

#### **ThermoFisher** SCIENTIFIC

# **Conquer the Challenges of Small Molecule Analysis**

Dr. Richard Jack

The world leader in serving science

#### Background

#### What are PFAS?

- PFASs are <u>Per- and PolyFluorinated Alkyl</u> Substances. Exclusively anthropogenic.
- · Structures contain a hydrophobic perfluoroalkyl backbone and a hydrophillic end group
- Include a diverse range of compounds with a variety of chain lengths and end groups



Perfluorooctanoic acid

- PFOA
- Teflon®

#### Industrial Uses

- PFAS are used in a variety of applications because of their chemical and physical properties. These include:
  - Industrial polymers (Teflon® PFOA)
  - Stain repellants (Scotch Guard® PFOS)
  - Aqueous film forming foams (AFFF) fire fighting applications

н

3

8:2 Fluorotelomer sulfonate

8:2 FTS

нĩ

#### Sources

- · Can be found anywhere at differing (generally lower) concentrations,
- Areas of elevated concentration and concern are:
  - Airports
  - Run-off from incidents of fire
  - Landfill leachate
  - WWTP effluent



# PFAA Drinking - , Wastewater and Soil Clean up > Non-targeted and targeted





- Water and Soil Method Validations
- EPA Off. Of Ground Water and Drinking Water
- EPA Office of Water
- Approx. 600 military bases in US have PFC contamination



In May 2017, Administrator Scott Pruitt established a task force to restore EPA's Superfund program to its rightful place at the center of the Agency's core mission to protect health and the environment.



#### STATE LEVEL ACTIONS

- PFOS and PFOA in WW regulated in 7 States
- **California** "Expressed support for including the **broader panel** of perfluoroalkyl and polyfluoroalkyl substances (PFASs)."



• North Carolina – New Legislation specifically focused on PFC/PFAA monitoring



SECTION 7.(d) The sum of eight million dollars (\$8,000,000) ... (ii) ...of essential scientific instruments, (iii) ...sample collection and analysis, training



Dr. P. Lee Ferguson

Assoc. Prof. of Civil and Environmental Engineering Duke University





# EPA is Proposal to Regulate PFAA in DW



- Announced in Feb. 2019
- First ever comprehensive nationwide Action Plan to help states address concerns.
- Proposing a Federal Maximum Contaminant Level
- Begin the process to **propose** a regulation
- This doesn't mean PFAS are regulated!

EPA's PFAS Action Plan: A Summary of Key Actions ♣EPA

EPA's PFAS Action Plan outlines concrete steps the agency is taking to address PFAS and to protect public health.

EPA's Per- and Polyfluoroalkyl Substances (PFAS) Action Plan:

 Demonstrates the agency's critical national leadership by providing both short-term solutions and long-term strategies to address this important issue.



- Provides a multi-media, multi-program, national research and risk communication plan to address this emerging environmental challenge.
- Responds to the extensive public input the agency has received over the past year during the PFAS National Leadership Summit, multiple community engagements, and through the public docket.

EPA is taking a proactive, cross-agency approach to addressing PFAS. The key actions EPA is taking to help provide the necessary tools to assist states, tribes, and communities in addressing PFAS are summarized below.

- Drinking Water
- Clean up
- Monitoring
- Research Water and Toxicology
- Enforcement







#### Thermo Scientific<sup>™</sup> Small Molecule Analysis Solutions

**Profiling/Screening** 



Thermo Scientific<sup>™</sup> Orbitrap<sup>™</sup> Hybrid Mass Spectrometers **Targeted Quantitation** 





**Data Analysis** 



Thermo Scientific<sup>™</sup> TSQ Triple Quadrupole Mass Spectrometers Thermo Scientific<sup>™</sup> Compound Discoverer<sup>™</sup> with mzCloud<sup>™</sup> mass spectral library

mzCloud is a trademark of HighChem LLC, Slovakia



# Orbitrap Mass Analyzer Technology for Screening of Unknowns



- High and ultra-high <u>resolution</u> enables discrimination between ions of interest and interfering ions in the very low and low *m/z* range
- Mass accuracy the superior resolution enables accurate mass assignments with sub 1-ppm mass accuracy to eliminate false positives
- Retrospective analysis enables investigation of new analytes in the same samples because it collects data on all analytes in the sample!

Learn More: www.thermofisher.com/orbitrap



## Enhanced Resolution Using Orbitrap Technology





Resolution: 10k, 30k, 50k, 100k





# Compounding Insights to Match Analysis Requirements

#### **Compound Discoverer 3.0 Software for Small Molecule Unknown Identification**

Efficiently extract highconfidence insights from information-rich small molecule HRAM data

Serves as a hub to seamlessly connect users to the tools they need to analyze productively and confidently





#### mzCloud Mass Spectral Library

**Rank search** more **effectively** with industry leading online spectra fragmentation library

mzCloud is a trademark of HighChem LLC, Slovakia

#### mzLogic Algorithm

From 1000's of candidates and hours of work to **fast automated logical analysis** 

Learn More: www.thermofisher.com/compounddiscoverer







# mzCloud Library



HRAM MS/MS and MS<sup>n</sup> **HCD** and **CID** fragmentation Multiple Energy Levels **100% Professionally Curated** >8000 Compounds >1M Fragment Structures



# Compound Discoverer 3.0: mzLogic

# Ideally

# But what if ...





# MS conditions:

Spray voltage 3800V, Capillary temperature 295°C, sheath gas 32 au, Aux gas 7 au, S-lens RF level 55

# Full MS/data dependent MS<sup>2</sup>



#### List of 146 PFAS target analytes

Formula type

Chemical formula

Chemical formula

Species (S(z) Polarity

M-H

M-H

M-H

M-H

16-16

MAN:

16.8

16.4

12.4

10.8

MAR

M-H

M-H

Mark.

MAR N

14-14

長舟

Negative

Negative

Regative

Neg2ting

Negative

Negative

Negative

Negative

Wegathe

Negative

Negative

Negative

Negative

**Negrine** 

Negative

Register

Negative

Negative

Negative

Negative

Fragative

Negative

Negative

Programme.

Negative

1 Negative

1 Negative

Formula[M]

C3HF303

CHERCO

Mass [m/z]

178.97781

112.5657



#### HRAM Strategy for PFAS/PFAA









# Finding Unknown PFAA's > Conc. than EPA Targeted List

# Continued: Showing >1E+04<2.6E+06 area Count.







# Targeted Quantitation Pain Points For Every Analytical Laboratory

#### Robustness

Consistency in day-to-day performance, sample-to-sample results, and user-to-user productivity



#### Speed

Enables higher throughput, faster analysis of complex mixtures



#### Sensitivity

Superior sensitivity for all molecule types regardless of matrix complexity



#### Resolution

Unusual for QqQs, however, significant benefits for complex mixtures, large molecules in complex matrices



**Targeted Quantitaton** 

Workflows

#### Confident quantitation for any compound, any matrix, any user

Thermo Scientific<sup>™</sup> TSQ Fortis<sup>™</sup> Triple Quadrupole MS





Thermo Scientific<sup>™</sup> TSQ Quantis<sup>™</sup> Triple Quadrupole MS



Everyday excellence

Thermo Scientific<sup>™</sup> TSQ Altis<sup>™</sup> Triple Quadrupole MS



For what's now and what's next

Learn More: www.thermofisher.com/confidentquan



#### **EPA Draft SW-846 Method 8327**





Thermo Scientific<sup>™</sup> Vanquish<sup>™</sup> Flex Binary UHPLC System fitted with PFC-free kit and interfaced with the TSQ Altis Triple Quadrupole Mass Spectrometer

\* All standards were obtained form Wellington Laboratories

\*\*Acrodisc GxF/0.2  $\mu$ m GHP membrane syringe-driven filters were washed twice with LC-MS grade methanol (2x 10 mL) and acetonitrile (2x 10 mL)

\*\*\* Silanized-amber glass autosampler vials sealed with polypropylene caps were free of contaminants and interferences



## Thermo Scientific TSQ Altis MS – Calibration Curves: Range 5 – 200 ppt

| Co   | mpounds  | LV 1 – 5 ppt<br>% Deviation | LV2 - 10 ppt<br>% Deviation | LV3 – 20 ppt<br>% Deviation | RT (min) | R²     |  |
|------|----------|-----------------------------|-----------------------------|-----------------------------|----------|--------|--|
| N-1  | PFTreA   | 15%                         | 7%                          | -2%                         | 14.83    | 0.9906 |  |
| N-2  | PFTriA   | 2%                          | 2%                          | 4%                          | 14.63    | 0.9966 |  |
| N-3  | PFDoA    | -8%                         | 4%                          | 7%                          | 14.3     | 0.9989 |  |
| N-4  | PFUnA    | -3%                         | 4%                          | -1%                         | 13.72    | 0.9996 |  |
| N-5  | PFDA     | 12%                         | 1%                          | -5%                         | 13.03    | 0.9979 |  |
| N-6  | PFNA     | 3%                          | 6%                          | -2%                         | 12.21    | 0.9983 |  |
| N-7  | PFOA     | 13%                         | -1%                         | -2%                         | 11.22    | 0.9972 |  |
| N-8  | PFHpA    | 1%                          | 6%                          | -2%                         | 9.91     | 0.9991 |  |
| N-9  | PFHxA    | 8%                          | 0%                          | -1%                         | 7.94     | 0.9983 |  |
| N-10 | PFPeA    | -16%                        | 4%                          | 14%                         | 4.98     | 0.9984 |  |
| N-11 | PFBA     | 0%                          | -1%                         | 3%                          | 2.68     | 0.9993 |  |
| N-12 | PFDS     | 4%                          | -14%                        | 11%                         | 13.7     | 0.9939 |  |
| N-13 | PFNS     | 0%                          | -6%                         | 15%                         | 13.04    | 0.9976 |  |
| N-14 | PFOS     | -7%                         | -4%                         | 9%                          | 12.24    | 0.9981 |  |
| N-15 | PFHpS    | 16%                         | -7%                         | -9%                         | 11.3     | 0.9979 |  |
| N-16 | PFHxS    | 13%                         | -5%                         | 0%                          | 10.11    | 0.9985 |  |
| N-17 | PFPeS    | 5%                          | 4%                          | -3%                         | 8.42     | 0.9991 |  |
| N-18 | PFBS     | 2%                          | 1%                          | -2%                         | 5.73     | 0.9995 |  |
| N-19 | PFOSA    | 10%                         | 5%                          | -4%                         | 13.66    | 0.9931 |  |
| N-20 | FtS 8:2  | 6%                          | -3%                         | -1%                         | 13       | 0.9997 |  |
| N-21 | FtS 6:2  | 7%                          | 3%                          | -7%                         | 11.12    | 0.9977 |  |
| N-22 | FtS 4:2  | 23%                         | -10%                        | -9%                         | 7.66     | 0.9976 |  |
| N-23 | NEtFOSAA | 4%                          | -13%                        | 9%                          | 14.04    | 0.9985 |  |
| N-24 | NMeFOSAA | -10%                        | 8%                          | 6%                          | 13.64    | 0.9993 |  |

Overlay of all PFC compounds analyzed in this method

#### **Calibration curves**

- Linearity over the range 5 200 ppt
  - (2-fold dilution not taken into consideration)
- $R^2 > 0.99$  for all compounds
- $\checkmark$  Deviation < 20%



#### EPA Field Samples – External Validation Study

# **60 EPA water samples**



- ✓ Field samples divided into 3 batches of 20 samples
- ✓ 2 Method blanks, 2 LLOQs levels (10 and 20 ppt) and 2 Lab controls (LCS) were prepared for each batch



# Perfluorotri- and Tetradecanoic Acids (PFTriDA and PFTeDA): Solubility Issues

Variable recoveries obtained due to their low solubility in water (highest spike concentration was diluted in 50:50 methanol: water)



BATCH 1 – LCS (80 ppt)

BATCH 2 – LCS (80 ppt)

BATCH 3 – LCS (80 ppt)





#### EPA Field Samples Results

#### RSD < 20% for majority of the compounds among different water matrices. All of the Reagent Water RSD <20%

|                  |                     | GROUNE | WATER            |       | REAGENT WATER    |       |                  | SURFACE WATER |                  |       |                  | WASTE WATER |                  |       |                  |       |
|------------------|---------------------|--------|------------------|-------|------------------|-------|------------------|---------------|------------------|-------|------------------|-------------|------------------|-------|------------------|-------|
| N = 5            | = 5 Low level spike |        | High level spike |       | Low level spike  |       | High level spike |               | Low level spike  |       | High level spike |             | Low level spike  |       | High level spike |       |
| Target compounds | Average<br>(ppt)    | RSD %  | Average<br>(ppt) | RSD % | Average<br>(ppt) | RSD % | Average<br>(ppt) | RSD %         | Average<br>(ppt) | RSD % | Average<br>(ppt) | RSD %       | Average<br>(ppt) | RSD % | Average<br>(ppt) | RSD % |
| N1_PFTeDA        | 26.13               | 12%    | 69.5             | 12%   | 24.43            | 10%   | 71.84            | 6%            | 26.78            | 18%   | 82.63            | 13%         | 23.92            | 11%   | 77.91            | 4%    |
| N2-PFTrDA        | 22.81               | 11%    | 65.76            | 12%   | 22.29            | 9%    | 74.45            | 6%            | 23.8             | 17%   | 76.87            | 15%         | 22.24            | 8%    | 77.47            | 7%    |
| N3-PFDoA         | 21.22               | 8%     | 64.08            | 12%   | 20.01            | 9%    | 73.25            | 9%            | 22.17            | 19%   | 71.55            | 14%         | 20.54            | 13%   | 75.8             | 9%    |
| N4_PFUdA         | 22.05               | 11%    | 65.41            | 7%    | 21.23            | 12%   | 72.08            | 9%            | 23.19            | 21%   | 69.81            | 11%         | 21.74            | 12%   | 74.95            | 9%    |
| N5_PFDA          | 22.98               | 9%     | 64.83            | 8%    | 21.63            | 11%   | 72.83            | 8%            | 23.55            | 17%   | 69.98            | 11%         | 23.16            | 3%    | 76.89            | 7%    |
| N6-PFNA          | 22.29               | 8%     | 66.83            | 8%    | 21.21            | 9%    | 73.4             | 7%            | 23.15            | 16%   | 70.65            | 10%         | 22.7             | 9%    | 75.64            | 7%    |
| N7-PFOA          | 22.89               | 12%    | 65.88            | 10%   | 21.26            | 9%    | 71.72            | 9%            | 24.15            | 15%   | 69.87            | 9%          | 27.08            | 8%    | 79.79            | 7%    |
| N8-PFHpA         | 23.34               | 11%    | 65.96            | 11%   | 21.89            | 10%   | 72.23            | 8%            | 25.51            | 18%   | 69.48            | 11%         | 26.35            | 12%   | 77.48            | 9%    |
| N9-PFHxA         | 22.33               | 12%    | 64.9             | 10%   | 21.05            | 8%    | 71.47            | 8%            | 23.36            | 16%   | 69.43            | 11%         | 40.48            | 7%    | 93.5             | 8%    |
| N10_PFPeA        | 27.41               | 13%    | 63.44            | 11%   | 23.42            | 12%   | 71.5             | 10%           | 32.24            | 23%   | 67.87            | 9%          | 38.32            | 3%    | 84.01            | 10%   |
| N11_PFBA         | 18.99               | 24%    | 64.11            | 4%    | 21.04            | 10%   | 70.09            | 6%            | 19.59            | 16%   | 63.82            | 6%          | 14.01            | 45%   | 66.61            | 6%    |
| N12-PFDS         | 20.79               | 14%    | 58.96            | 20%   | 18.2             | 14%   | 60.87            | 12%           | 22.02            | 24%   | 56.67            | 13%         | 19.43            | 24%   | 69.12            | 14%   |
| N13-PFNS         | 20.32               | 27%    | 56.17            | 16%   | 19.67            | 8%    | 59.42            | 10%           | 20.08            | 17%   | 57.1             | 12%         | 18.19            | 20%   | 63.55            | 9%    |
| N14-PFOS         | 22.57               | 20%    | 60.07            | 8%    | 21.26            | 16%   | 63.04            | 9%            | 24.71            | 14%   | 62.52            | 10%         | 24.29            | 10%   | 75.43            | 13%   |
| N15-PFHpS        | 20.81               | 12%    | 61.61            | 9%    | 19.53            | 11%   | 67.95            | 10%           | 21.7             | 17%   | 63.27            | 10%         | 19.43            | 15%   | 71.37            | 10%   |
| N16-PFHxS        | 19.69               | 15%    | 59.56            | 10%   | 18.38            | 10%   | 63.56            | 9%            | 20.89            | 14%   | 61.66            | 7%          | 19.94            | 11%   | 67.58            | 9%    |
| N17-PFPeS        | 20.32               | 11%    | 62.4             | 9%    | 19.35            | 6%    | 65.83            | 9%            | 21.52            | 18%   | 63.48            | 8%          | 19.87            | 10%   | 68.3             | 9%    |
| N18-PFBS         | 22.55               | 13%    | 61.07            | 10%   | 19.98            | 11%   | 63.39            | 10%           | 21.34            | 26%   | 61.46            | 9%          | 24.88            | 15%   | 52.03            | 36%   |
| N19-PFOSA        | 20.51               | 15%    | 60.19            | 12%   | 18               | 10%   | 60.89            | 12%           | 22.6             | 17%   | 63.44            | 10%         | 19.66            | 10%   | 67.62            | 9%    |
| N20_FtS8_2       | 22.18               | 7%     | 63.6             | 6%    | 21.55            | 10%   | 69.86            | 8%            | 20.12            | 18%   | 66.8             | 8%          | 21.51            | 8%    | 71.42            | 7%    |
| N21-FtS6_2       | 20.64               | 13%    | 64.29            | 11%   | 21.46            | 17%   | 69.2             | 7%            | 29.54            | 37%   | 80.12            | 13%         | 33.15            | 25%   | 82.55            | 11%   |
| N22-FtS4_2       | 21.11               | 6%     | 62.04            | 5%    | 20.4             | 11%   | 69.78            | 6%            | 21.02            | 15%   | 65.49            | 11%         | 19.75            | 7%    | 69.17            | 8%    |
| N23_NEtFOSAA     | 23.66               | 12%    | 63.56            | 11%   | 22.96            | 18%   | 70.55            | 7%            | 23.72            | 25%   | 70.56            | 14%         | 22.16            | 16%   | 76.7             | 8%    |
| N24_NMeFOSAA     | 23.88               | 9%     | 65.42            | 9%    | 21.8             | 8%    | 73.34            | 7%            | 23.97            | 17%   | 71.28            | 8%          | 22.9             | 10%   | 73.38            | 7%    |



- ✓ TSQ Altis Triple Quadrupole MS is able to quantitate at 5 ppt the list of PFCs listed in EPA draft SW-846 method 8327 using direct injection (2-fold dilution not taken into consideration)
- TSQ Altis Triple Quadrupole MS is able to quantitate certain PFCs <u>5 times lower</u> than the LLOQ reported by EPA
- ✓ Thermo Scientific<sup>™</sup> Accucore<sup>™</sup> RP-MS LC Columns provide similar performance as the Waters Acquity CSH Phenyl-hexyl described in EPA draft SW-846 method 8327
- ✓ Retention time stability was very good inter-batch
- Large injection volumes overload the analytical columns and chromatographic peak fronting is observed. Reduced injection volumes maintain sensitivity and improve assay robustness.
- Longest chain perfluorocarboxylic acids showed high variability within batches mainly due their low solubility in water (higher spike concentration)
- EPA field samples showed RSDs below 20% for most of the compounds among different water matrices



# Thank You for Listening

# Questions

For more information visit: http://thermofisher.com/quantitation

?



Please return our survey to receive a drink ticket for our daily networking event where you can continue discussions with our experts!



