# HPLC Enantiomeric Separations of Pharmaceuticals Using Polar Organic Mobile Phases

J.T. Lee and William Campbell

Supelco, Div. of Sigma-Aldrich, Bellefonte, PA 16823 USA



T411054



# Agenda

- Background
- Benefits
- Mechanisms
- Separation Comparisons
- LC-MS Applications
- Optimization
- Screen Results
- Summary
- Conclusions

#### Background

Polar Organic Mode (POM):

- Astec CYCLOBOND<sup>™</sup> (1989) (e.g. 95/5/0.3/0.2, CH<sub>3</sub>CN/MeOH/HOAc/TEA)
  - Acetonitrile is a dominant solvent
  - Acid/base additives are to suppress ionization
  - Samples have at least 2 H-bonds capability
- Astec CHIROBIOTIC<sup>®</sup> (neutral molecules)
- Astec P-CAP, P-CAP-DP
- Cyclofructans
- Polysaccharides (e.g. ASTEC Cellulose DMP)

Polar Ionic Mode (PIM):

- Astec CHIROBIOTIC (2003) (e.g. 100/0.1/0.1, MeOH/HOAc/TEA)
  - Methanol is a dominant solvent
  - CSPs have ionic character
  - Acid/base additives promote ionic interactions for ionizable samples
  - ASTEC CHIROBIOTIC V2

# **Benefits of Polar Organic Mode (POM)**

Selectivity

- Conformational changes of CSPs
- Different interaction mechanisms

Sensitivity

- Less baseline noise in UV detection
- LC-MS compatible for biological samples
- Solubility
  - Easy sample prep
  - Easy scale-up

### Mechanism 1: Astec CYCLOBOND CSPs



Reversed phase mode: the most hydrophobic portion of the molecule will form an inclusion complex with the cyclodextrin cavity.



**Inclusion Complexation** 

Polar organic mode:  $CH_3CN$  occupies the cavity, so the chiral molecule lies across the surface and interacts with the upper rim of the cyclodextrin ring



**Surface Interactions** 



### Mechanism 2: Astec CHIROBIOTIC CSPs

- Macrocyclic glycopeptides provide a multi-modal chiral surface capable of a wide variety of different interactions
- Subtle differences between them provide different, dominant retention mechanisms that lead to enantiomeric recognition
- Among these mechanisms, ionic interactions dominate for ionizable molecules
- A family of 6 columns
- Macrocyclic glycopeptide CSPs provide unique separations for polar, ionic molecules



Vancomycin (CHIROBIOTIC V2/V)

### **Mechanism 3: Cellulose DMPC Derivative**



Cellulose, a linear polymer of D-glucose linked by  $\beta(1\rightarrow 4)$ -glycosidic bonds with several hundreds to over ten thousand units.

DMPC, 3,5-Dimethylphenyl carbamate derivatized cellulosic phase coated onto silica.

# From NP to POM: Cellulose DMP (Warfarin)



#### SIGMA-ALDRICH<sup>®</sup>

#### **Separation Comparison: Warfarin**



SIGMA-ALDRICH

#### **Separation Comparison: Mianserin**



SIGMA-ALDRICH

10

© 2011 Sigma-Aldrich Co. All rights reserved.

#### **Separation Comparison: Tröger's Base**



SIGMA-ALDRICH<sup>®</sup>

#### **Polar Organic Mode-Cellulose DMP**



#### **Polar Organic Mode-Cellulose DMP**



SIGMA-ALDRICH<sup>®</sup>

#### **Polar Organic Mode-Cellulose DMP**



#### SIGMA-ALDRICH®

# Cellulose DMP: NP $\rightarrow$ POM $\rightarrow$ NP $\rightarrow$ POM

Dimension: 15 cm x 4.6 mmNP: 90/10, Heptane/IPAFlow Rate: 0.5 mL/minPOM: 100/0.1w%, MeOH/NH4 formateTemperature: 25 ° CUV: 254 nm,Samples: *trans*-stilbene oxide (NP)/mianserin (POM)



SIGMA-ALDRICH

# **Optimization: CHIROBIOTIC (Acid/Base Ratio Effect)**



SIGMA-ALDRICH

# **Optimization: CHIROBIOTIC (Salt Effect)**



SIGMA-ALDRICH

# **Optimization: Polysaccharides (Solvent Effect)**





#### **Full Screen Results-1**

10/90/0.1, IPA/Heptane/DEA 100/0.1w%, MeOH/NH<sub>4</sub> formate

| Basic           | Cellulose DMP               | Cellulose DMP               | CHIROBIOTIC V2              |
|-----------------|-----------------------------|-----------------------------|-----------------------------|
| Pharmaceuticals | Normal Phase                | Polar Organic Mode          | Polar Ionic Mode            |
|                 | k <sub>1</sub> /Selectivity | k <sub>1</sub> /Selectivity | k <sub>1</sub> /Selectivity |
| Atropine        | 0.06/1.33                   | 0.18/1.00                   | 3.54/1.00                   |
| Bupivacaine     | 0.86/1.00                   | 0.23/1.00                   | 0.31/1.34                   |
| Citalopram      | 2.75/1.14                   | 0.26/1.00                   | 2.37/1.12                   |
| Clenbuterol     | 1.34/1.00                   | 0.03/1.00                   | 1.02/1.22                   |
| Diperodon       | No elution                  | 0.73/3.89                   | 0.66/1.00                   |
| Disopyramide    | 1.65/1.07                   | 0.11/1.02                   | 1.08/1.14                   |
| Esmolol         | 3.36/1.57                   | 0.09/1.25                   | 1.34/1.12                   |
| Fluoxetine      | 1.09/1.08                   | 0.07/1.02                   | 2.00/1.24                   |
| Homatropine     | 2.40/1.62                   | 0.08/2.04                   | 0.13/1.00                   |
| Hydroxyzine     | 1.16/1.23                   | 0.40/1.10                   | 0.71/1.00                   |
| Indapamide      | No elution                  | 0.37/2.27                   | 0.26/1.00                   |
| Ketamine        | 0.80/1.14                   | 0.48/1.00                   | 0.27/1.00                   |
| Ketoconazole    | No elution                  | 4.31/1.06                   | 0.31/1.00                   |

#### **Full Screen Results-2**

| Basic           | Cellulose DMP               | Cellulose DMP      | CHIROBIOTIC V2              |
|-----------------|-----------------------------|--------------------|-----------------------------|
| Pharmaceuticals | Normal Phase                | Polar Organic Mode | Polar Ionic Mode            |
|                 | k <sub>1</sub> /Selectivity | k₁/Selectivity     | k <sub>1</sub> /Selectivity |
| Mefloguine      | 1.59/1.19                   | 0.07/1.00          | 2.86/1.36                   |
| Methocarbamol   | No elution                  | 0.30/1/35          | 1.08/1.00                   |
| Methoxypheamine | 0.86/1.21                   | 0.07/1.00          | 1.52/1.16                   |
| Metoprolol      | 1.25/2.66                   | 0.08/1.38          | 1.22/1.12                   |
| Mianserin       | 0.79/1.23                   | 0.96/1.26          | 0.65/1.98                   |
| Ofloxacin       | No elution                  | 1.91/1.13          | No Elution                  |
| Ondansetron     | No elution                  | 1.62/1.07          | 1.02/1.00                   |
| Promethazine    | 0.58/1.05                   | 0.47/1.00          | 1.76/1.68                   |
| Propranolol     | 2.36/2.22                   | 0.16/1.24          | 1.60/1.16                   |
| Ritalin         | 0.66/1.09                   | 0.16/1.00          | 1.32/1.45                   |
| Thalidomide     | No elution                  | 1.20/1.00          | 0.47/2.97                   |
| Tolperisone     | 0.41/1.00                   | 0.27/1.00          | 1.14/1.24                   |
| Troger's base   | 0.78/1.22                   | 1.33/1.28          | 0.18/1.00                   |

#### SIGMA-ALDRICH°

### **Summary**

Macrocyclic glycopeptides and polysaccharide CSPs can be complementary to one another using polar organic mobile phases

Suggested Sample Screen: 100/0.1w%, MeOH/NH<sub>4</sub> formate

- Astec CHIROBIOTIC V2 and T (TAG)
- Astec Cellulose DMP and "AD"-type phases
- Other CSPs
  - Different derivatives of polysaccharides
  - Immobilized polysaccharides
  - Astec P-CAP (adds 50-70% CH<sub>3</sub>CN)
  - Cyclofructans (adds 30-50% CH<sub>3</sub>CN)
  - Cinchona alkaloid ion exchange CSP (adds 30-50%  $CH_3CN$ )
  - Others

#### **Conclusions**

- Polar organic mobile phases provide additional opportunities for chiral selectivity should other types of mobile phases fail
- PIM/POM provide easy sample preparation for polar/ionizable compounds
- No memory effect (quick equilibration)
- LC-MS compatible mobile phases
- Easy scale-up for prep purification
- Straight-forward optimization steps