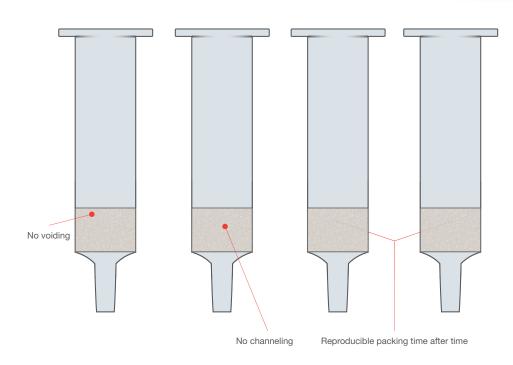
thermo scientific

SOLA Solid Phase Extraction (SPE) cartridges and plates

Join the revolution Unparalleled performance

Join the revolution: next-generation Solid Phase Extraction (SPE)


Thermo Scientific[™] SOLA[™] products revolutionize Solid Phase Extraction (SPE). This first fritless SPE product range provides greater reproducibility with cleaner, more consistent extracts.

SOLA products provide unparalleled performance characteristics compared to conventional SPE, phospholipid removal and protein precipitation products.

This includes:

- higher levels of reproducibility
- higher levels of extract cleanliness
- reduced solvent requirements
- increased sensitivity

The proprietary manufacturing process involved in the production of SOLA cartridges and plates, provides an SPE product which eliminates issues normally associated with conventional loose-packed SPE, by combining the polyethylene frit material and media components into a uniform sorbent bed, removing the need for frits (Figure 1).

The manufacturing process has the additional benefit of removing extractables from component parts, resulting in cleaner sample extracts.

SOLA products provide reduced failure rates, higher analysis speeds and lower solvent requirements, which are critical in today's laboratory environment.

The increased performance delivered by SOLA products provides higher confidence in analytical results and lowers cost without compromising ease of use or requiring complex method development.

Conventional SPE cartridges and well plates are packed with a loose powder of silica or polymeric material positioned between two frits. These packed beds are potentially prone to settling and voiding in production or transportation. This creates phase channeling and packing irreproducibility, resulting in reduced recovery and reproducibility in analytical results (Figure 2).

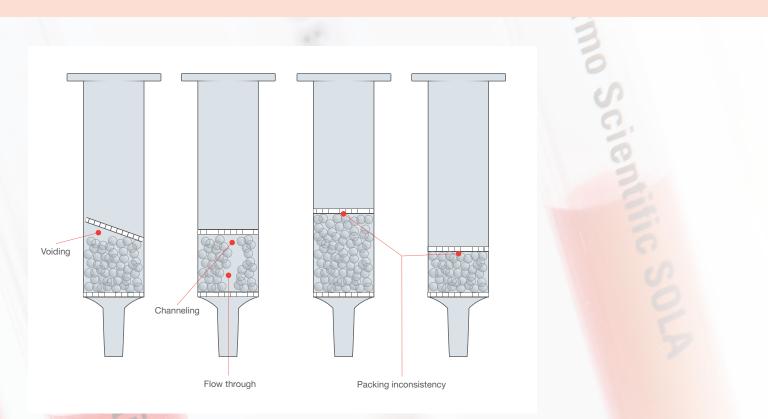
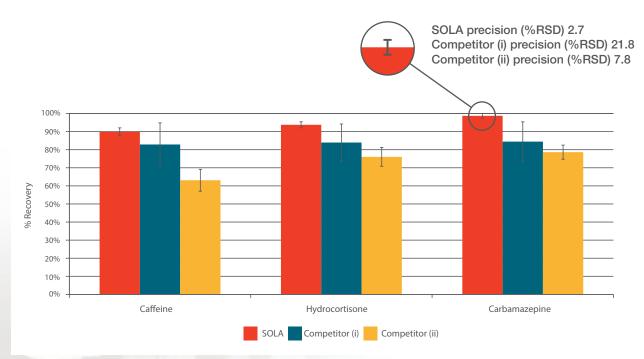


Figure 2: Examples of conventional SPE product issues


Technical information

The following information highlights the advantages associated with SOLA products over conventional loosepacked SPE products.

Improved reproducibility and recovery

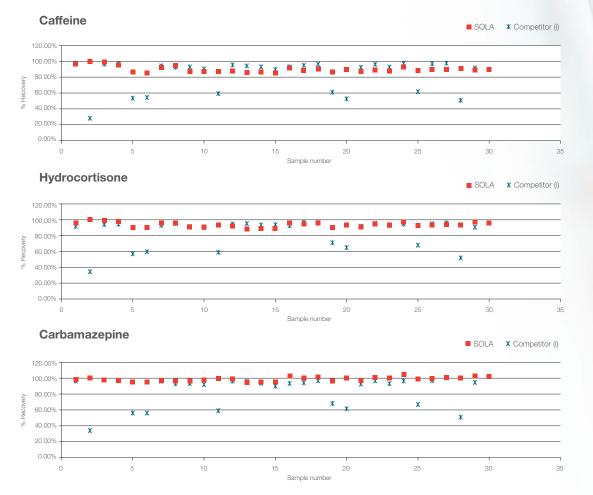
Figure 3 shows the reproducibility and recovery levels of SOLA products for three test probes; caffeine, hydrocortisone and carbamazepine when compared to two equivalent loose-packed, low bed weight, competitor products. The data shows that SOLA products outperform competitor products, even when utilizing the recommended generic competitor methodology.

Error bars illustrate significantly lower variability sample-to-sample for SOLA products compared to conventional SPE products, ensuring you achieve the correct result time after time.

Figure 3: SOLA products shows significantly higher reproducibility and recovery levels

	Caffeine	Hydrocortisone	Carbamazepine
SOLA precision (%RSD)	4.4	3.3	2.7
Competitor (i) precision (%RSD)	23.9	20.5	21.8
Competitor (ii) precision (%RSD)	12.1	10.4	7.8

Method


Condition	200 µL methanol
Equilibrate	200 µL water
Load	1 mL sample
Wash	200 μ L 5% methanol in water
Elute	200 µL methanol

SOLA SA

Improved reproducibility

Figure 4 highlights the reproducibility of SOLA products with three test probes; caffeine, hydrocortisone and carbamazepine when compared to an equivalent loose-packed, low bed weight, competitor product. The data shows that SOLA products have consistent recoveries across all thirty test samples. The conventional loose-packed SPE product from competitor (i) shows that on average one in every four samples gives a significantly lower recovery. This results in inconsistencies in results. In comparison, SOLA products provide significantly higher levels of reproducibility, which is vitally important for high-throughput studies.

This improved reproducibility is further demonstrated in Figure 5, which shows that SOLA products have more uniform flow-though characteristics compared to the equivalent loose-packed, low bed weight, competitor products.

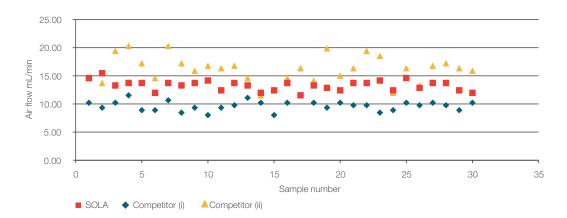


Figure 5: The consistent flow rate of SOLA products compared to equivalent loose-packed products

Reproducibility in plasma

Due to their nature, biological matrices such as plasma present a difficult challenge in obtaining reproducible results. The excellent performance characteristics of SOLA products provide high levels of reproducibility, even when dealing with these difficult matrices. This has been demonstrated by the extraction of rosuvastatin from human plasma using Thermo Scientific[™] SOLA[™] 96-Well Plate.

Figure 6 shows the precision data for extractions of a fixed concentration of analyte across the entire plate. This can be visually observed in Figure 7, which shows randomly selected overlaid chromatograms of rosuvastatin.

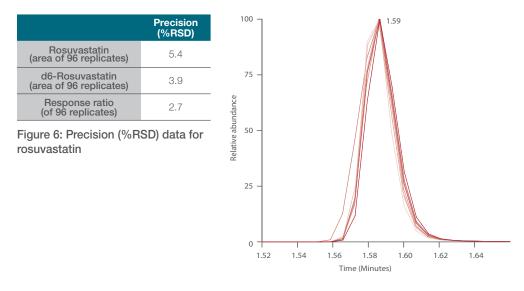


Figure 7: Overlaid chromatograms of rosuvastatin

Higher sensitivity and lower solvent consumption

Figure 8 shows that SOLA products achieve excellent recovery levels even with low volumes of extract solvents, resulting in a more concentrated analyte and increased sensitivity. Additional cost and time saving benefits can be achieved from reduced sample dry-down time and solvent usage.

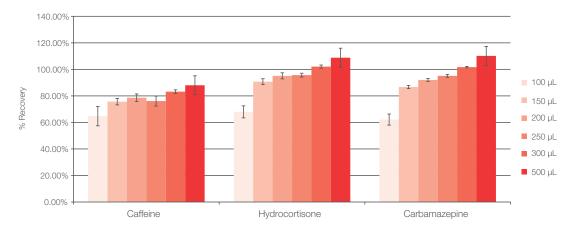
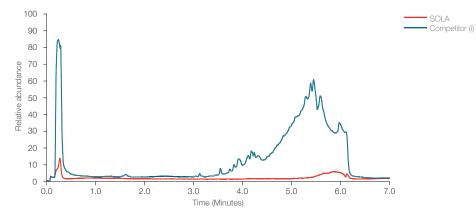
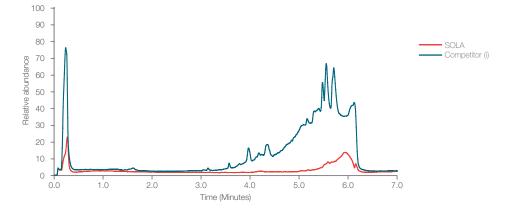


Figure 8: High recovery levels are achieved with SOLA products at low elution volumes, resulting in increased sample concentrations and sensitivity

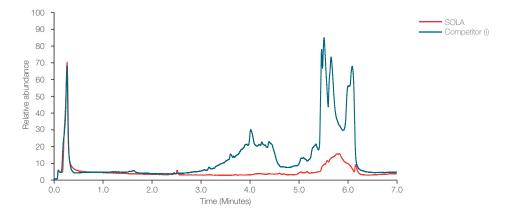
These low-volume extractions would be significantly compromised when using a conventional loose-packed, low bed weight, SPE product. See Figure 9.

SOLA products exhibit recovery and reproducibility levels at low extraction volumes which are significantly better than conventional loose-packed, low bed weight, competitor products.

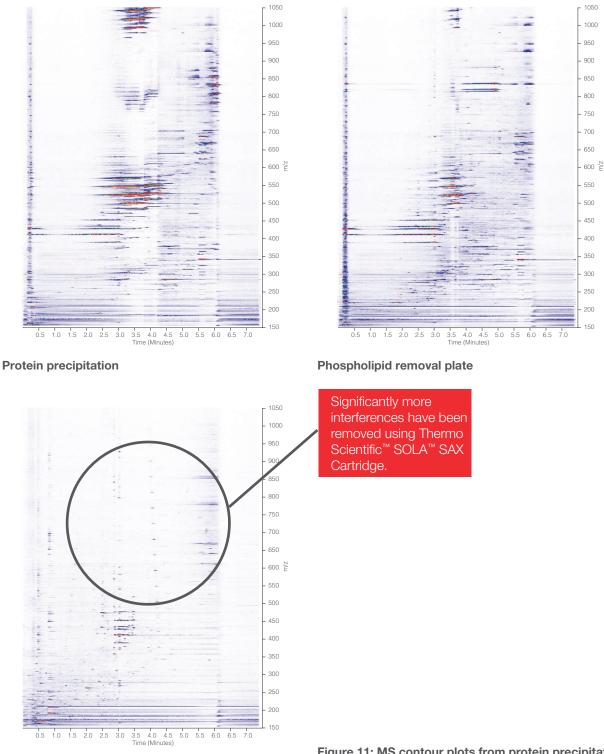




Figure 9: SOLA products recovery and reproducibility at lower extraction volumes

Cleanliness of extract

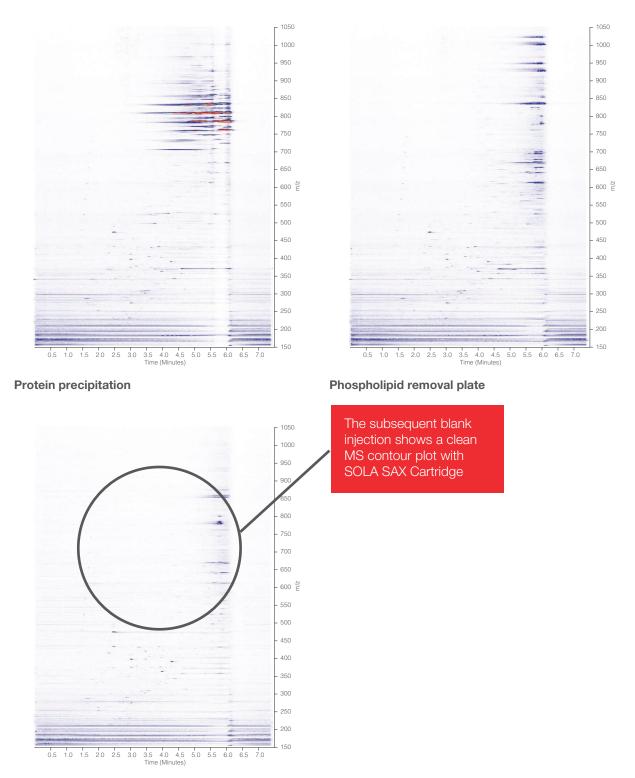

SOLA products proprietary manufacturing process provides a cleaner product and, as a result, a cleaner sample extract. This is shown in Figure 10, where SOLA products are compared against competitor (i) conventional loose-packed SPE product, which have both been extracted with acetonitrile, dichloromethane and methanol, respectively.

Acetonitrile extract comparison: SOLA products versus competitor (i)


Dichloromethane extract comparison: SOLA products versus competitor (i)

Methanol extract comparison: SOLA products versus competitor (i)

Figure 10: SOLA products are significantly cleaner than the equivalent loose-packed SPE product from competitor (i)


SOLA products offer greater selectivity, reproducibility and cleanliness of sample extract, compared to other sample preparation technologies such as protein precipitation and phospholipid removal plates. This is exemplified in Figure 11, which shows MS contour plots from these respective technologies. It can be seen that SOLA products provide cleaner sample extracts resulting in greater confidence in your analytical results.

SOLA SAX Cartridge

Figure 11: MS contour plots from protein precipitation, phospholipid removal plates and SOLA SAX Cartridge

Failure to remove the matrix interferences in the primary sample preparation process can result in substantial carry over of phospholipids from sample-to-sample. Figure 12 shows MS contour plots of subsequent blank injections. This shows that there is considerable carry over when using protein precipitation or phospholipid removal products when compared to SOLA products. Removal of phospholipids are key to reducing ion suppression, obtaining improved sensitivity in MS detection and providing confidence in analytical results. It also prevents the need for costly column and system maintenance.

SOLA SAX Cartridge

Figure 12: MS contour plots of the subsequent blank injections - protein precipitation, phospholipid removal and SOLA SAX Cartridge

SOLA product methods

The previous data shows how SOLA products can outperform conventional loose-packed competitor SPE products, even when using competitor prescribed methodology. The generic SOLA product methods outlined below are designed to be a starting point for most sample extraction protocols.

Generic method protocol for Thermo Scientific cartridge and 96 well plate formats:

SOLA[™] HRP cartridge

Reversed-phase

Condition	500 µL methanol
Equilibrate	500 µL water
Load	50 to 500 µL of sample at 1 mL/min
Wash 1	500 µL 5% methanol in water
Elute	200 μL - 500 μL methanol

SOLA[™] SCX cartridge

Mixed-mode strong cation exchanger

Condition	500 µL methanol
Equilibrate	500 µL water with 1% formic acid
Load	50 to 500 µL of sample at 1 mL/min containing 1% formic acid
Wash 1	500 µL water with 1% formic acid
Wash 2	500 µL methanol with 1% formic acid
Elute	200 µL - 500 µL methanol with 5% ammonium hydroxide

SOLA[™] SAX cartridge

Mixed-mode strong anion exchanger

Condition	500 µL methanol
Equilibrate	500 µL water with 1% ammonium hydroxide
Load	50 to 500 µL of sample at 1 mL/min containing 1% ammonium hydroxide
Wash 1	500 µL water with 1% ammonium hydroxide
Wash 2	500 µL methanol with 5% ammonium hydroxide
Elute	200 µL - 500 µL methanol with 1% formic acid

SOLA[™] WAX cartridge

Mixed-mode weak anion exchanger

Condition	500 µL methanol
Equilibrate	500 µL water with 1% formic acid
Load	50 to 500 µL of sample at 1 mL/min containing 1% formic acid
Wash 1	500 µL water with 1% formic acid
Wash 2	500 µL methanol with 1% formic acid
Elute	200 µL - 500 µL methanol with 5% ammonium hydroxide

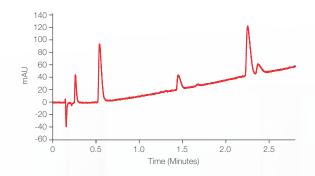
SOLA[™] WCX cartridge

Mixed-mode weak cation exchanger

Condition	500 µL methanol
Equilibrate	500 µL water with 1% ammonium hydroxide
Load	50 to 500 µL of sample at 1mL/min containing 1% ammonium hydroxide
Wash 1	500 µL water with 1% ammonium hydroxide
Wash 2	500 µL methanol with 5% ammonium hydroxide
Elute	200 µL - 500 µL methanol with 1% formic acid

For more advice on how you can use SOLA products to improve your sample preparation, please visit thermofisher.com/chromatographyconsumables

Beta blockers from urine on SOLA SCX cartridges


Atenolol, pindolol, metoprolol, propranolol, alprenolol

SOLA SCX SPE protocol

Product	SOLA SCX 10 mg/mL cartridge P/N 60109-002
Matrix	urine
Condition	500 µL methanol
Equilibrate	500 μL water
Load	200 µL spiked urine
Wash 1	250 µL water + 0.1% formic acid
Wash 2	250 µL methanol + 0.1% formic acid
Elute	250 μL 80:20 (v/v) DCM:IPA + 5%
	ammonium hydroxide
Dry	under nitrogen
Reconstitute	200 µL 90:10 (v/v) water:methanol

HPLC conditions

Instrumentation	Thermo Scientific™ HPLC				
Column	Thermo Scientific™ Accucore™				
	C18 5µ	um 50 x	2.1mm	P/N	
	17126	-052130	C		
Mobile phase A	water -	+ 0.1%	formic a	icid	
Mobile phase B	methanol + 0.1% formic acid			nic acid	
Gradient	t/min	%A	%В		
	0.0	90	10		
	2.5	60	40		
Flow rate	0.7 mL/min				
Column temperature	45° C				
Injection volume	1 μL				
Detector wavelength	220 nm				

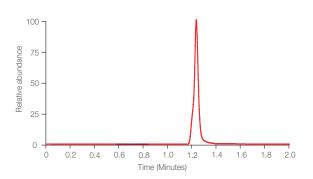
Compound	Atenolol	Pindolol	Metoprolol	Propranolol	Alprenolol
Precision (% RSD)	4.2	3.2	3.6	3.8	4.4
% Recovery	88	79	94	88	89

Thermo Scientific SULA

ermo Scientilio St

LC-MS/MS method for the determination of enalapril and enalaprilat from human plasma using SOLA HRP well plate

Enalapril, enalaprilat, benazepril (IS)

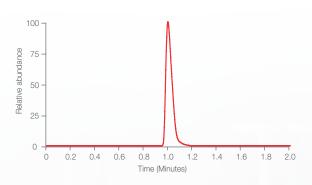

SOLA HRP SPE protocol

Product	SOLA HRP 96 well plate P/N, 10 mg/2 mL, 60309-001
Matrix	human plasma
Condition	1 mL methanol
Equilibrate	1 mL water
Load	200 µL of spiked human plasma
	containing internal standard
Wash	200 µL water + 0.1% formic acid
Elute	2 x 200 µL methanol + 2% ammonia
Dry	under nitrogen
Reconstitute	200 µL 90:10 (v/v) water:methanol

HPLC conditions

Instrumentation	Thermo Scientific™ HPLC			
Column	Thermo Scientific™ Hypersil™ GOLD			
	1.9 µr	m, 50 x 2	.1mm P/N 2	25002-052130
Mobile phase A	water	+ 0.1%	formic acid	
Mobile phase B	acetonitrile + 0.1% formic acid			
Gradient	t/min	%A	%В	
	0.0	90	10	
	1.0	0	100	
Flow rate	0.6m L/min			
Column temperature	70° C			
Injection volume	2.5 μL			
Column temperature	1.0 0.6m 70° C	0 L/min		

Compound	% Recovery	Precision (%RSD)	Accuracy (%difference)
Enalapril	81	6.6	-1.5
Enalaprilat	85	6.6	-7.3



MS conditions

Instrumentation	Thermo Scientific [™] TSQ Vantage [™]
Ionization conditions	HESI
Polarity	positive
Spray voltage	3000 V
Vaporizer temp	317° C
Sheath gas pressure	52 psi
lon sweep pressure	0 psi
Aux gas pressure	43 psi
Capillary temp	370° C
Declustering voltage	0 V
Collision pressure	1.5
Cycle time (s)	0.02
Q1 (FWHM)	0.7
Q3 (FWHM)	0.7

Compound	Enalapril	Enalaprilat	Benazepril (IS)
Parent (m/z)	377.3	349.2	425.3
Products (m/z)	234.2	206.2	351.2
Collision energy (eV)	16	17	19
S-lens	85	80	93

Enalapril

Enalaprilat

Separation of bases and neutrals from human plasma and urine using SOLA SCX cartridge

Procainamide, propranolol, amitriptyline, hydrocortisone, corticosterone, progesterone (IS)

Flow rate

Injection volume

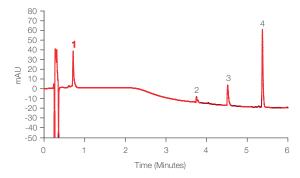
Column temperature 25° C

Detector wavelength 254 nm

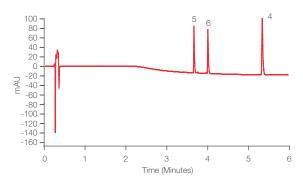
SOLA SCX SPE protocol

HPLC conditions

Product	SOLA SCX cartridge P/N, 10 mg/mL 60109-002
Matrix	human plasma and urine
Condition	1000 µL methanol
Equilibrate	1000 µL water
Load	350 μL sample
Wash	350 µL water + 2% formic acid
Elute 1	350 μL methanol
Elute 2	350 μL methanol + 5% ammonia
	dilute or dry and reconstitute as appropriate


Instrumentation	Thermo	Thermo Scientific HPLC			
Column	Thermo Scientific™ Accucore™ RP-MS				
	2.6 µm, 50 x 3mm p/n 17626-0				
Mobile phase A	20mM ai	20mM ammonium acetate			
Mobile phase B	acetonitrile				
Gradient	t/min	%A	%B		
	0.0	95	5		
	0.5	95	5		
	5.0	5	95		

0.8m L/min


10 µL

	200 -				56	4	
mAU		1	2		2	3	4
			Tii	me (Minute	s)		

Neutral standard (top trace), Basic standard (bottom trace) showing compounds 2 and 5 co-eluting

Bases extraction

Neutral extraction

Plasma

Compound	% Recovery	Precision (% RSD)
1. Procainamide	91.6	2.3
2. Propranolol	102.3	3.4
3. Amitryptyline	95.5	2.8
4. Progesterone	Internal S	itandard
5. Hydrocortisone	96.7	2.7
6. Corticosterone	95.9	2.9
Pure standard		

Compound	% Recovery	Precision (% RSD)	
1. Procainamide	87.3	1.7	
2. Propranolol	94.2	2.9	
3. Amitryptyline	96.9	1.8	
4. Progesterone	Internal Standard		
5. Hydrocortisone	98.5	1.3	
6. Corticosterone	98.9	1.1	

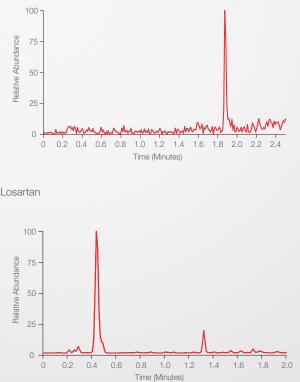
Urine

Compound	% Recovery	Precision (% RSD)
1. Procainamide	98.3	11.8
2. Propranolol	97.6	3.7
3. Amitryptyline	95.3	5.2
4. Progesterone	Internal S	Standard
5. Hydrocortisone	91.4	4.6
6. Corticosterone	95.8	6.4

LC-MS/MS method for the determination of HCTZ and losartan from human plasma using SOLA SCX cartridge HCTZ, losartan, furosemide (IS)

SOLA SCX SPE protocol

HPLC conditions


Product	SOLA SCX cartridge P/N, 10 mg/mL
	60109-002
Matrix	human plasma
Condition	1 mL methanol
Equilibrate	1 mL water
Load	100 µL of spiked human plasma containing
	internal standard
Wash	200 µL water + 0.1% formic acid
Elute	200 µL acetonitrile + 3% ammonia
Dry	under nitrogen
Reconstitute	100 µL 80:20 (v/v) water:acetonitrile

Instrumentation	Thermo	Thermo Scientific HPLC				
Column	Thermo Scientific™ Accucore™ aQ, 2.6 µm					
	50 x 2.1	mm P/N	17326-052130			
Mobile phase A	water +	0.1% form	nic acid			
Mobile phase B	acetonit	acetonitrile + 0.1% formic acid				
Gradient	t/min	%A	%B			
	0.0	80	20			
	2.0	30	70			
Flow rate	0.4m L/	'min				
Column temperatur	re 40° C					
Injection volume	2.5 µL					

	% Recovery	Precision (% RSD)				
		Low QC	High QC	Low QC	High QC	
Losartan	65.8	6.1	4.3	11.3	11.6	
HCTZ	86.4	3.3	1.6	7.6	0.5	

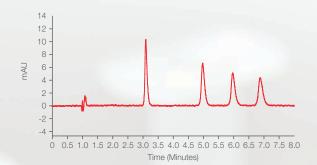
MS conditions

Instrumentation	Thermo Scientific TSQ Vantage
Ionization conditions	HESI
Polarity	+ losartan / - HCTZ and furosemide
Spray voltage	3000 V
Vaporizer temp	300° C
Sheath gas pressure	60 psi
lon sweep pressure	0 psi
Aux gas pressure	30 psi
Capillary temp	300° C
Declustering voltage	0 V
Collision pressure	1.5
Cycle time (s)	0.5
Q1 (FWHM)	0.7
Q3 (FWHM)	0.7

HCTZ

Compound	нстг		Losa	Losartan		nide (IS)
Parent (m/z)	295.9 423.2		3.2	329.1		
Products (m/z)	205.0	269.0	180.0	207.0	205.0	385.0
Collision energy (eV)	24	20	35	20	22	16
S-lens	98	98	91	91	104	104

UV method for the determination of tricyclic antidepressants from human plasma using SOLA SCX cartridge


Tricyclic antidepressants

SOLA SCX SPE protocol

Product	SOLA SCX cartridge, 10 mg/mL P/N 60109-002
Matrix	human plasma
Condition	500 μL methanol
Equilibrate	500 µL water
Load	450 µL 1:2 plasma + 100 mM PBS
	buffer (pH 6.0)
Wash 1	500 µL water + 0.1% formic acid
Wash 2	500 µL methanol + 0.1% formic acid
Elute	500 µL acetonitrile + 5% ammonium
	hydroxide
Dry	under nitrogen do not apply heat
Reconstitute	150 μL 80:20 (v/v) water:acetonitrile

HPLC conditions

Instrumentation	Thermo Scientific HPLC
Column	Thermo Scientific Hypersil GOLD 3µm,
	150 x 2.1mm P/N 25003-152130
Mobile phase	70:30 (v/v) water + 0.1% formic acid
	/acetonitrile + 0.1% formic acid
Run time	7.5 minutes
Flow rate	0.4mL/min
Column temperature	30° C
Injection volume	1 μL
Detector wavelength	254 nm

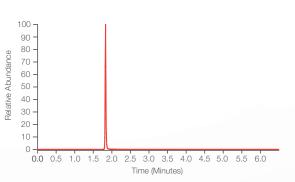
Compound	Doxepin	Imipramine	Amitriptyline	Trimipramine (IS)
Precision (%RSD)	5	4.8	4	5.1
% Recovery	78.9	73.4	74.3	69.7

LC-MS/MS method for the determination of capecitabine from human plasma using SOLA HRP cartridge

Capecitabine

SOLA HRP SPE protocol

HPLC conditions


SOLA HRP cartridge, 10 mg/mL P/N
60109-001
human plasma
500 μL methanol
500 μL water
200 μL spiked plasma
200 μL 80:20 (v/v) water:methanol
250 μL methanol
under nitrogen
200 µL water

Instrumentation	Thermo	Scientific H	PLC		
Column	Thermo	Thermo Scientific [™] Accucore [™] PFP			
	2.6 µm,	30 x 2.1mn	n p/n 17426-032130		
Mobile phase A	water				
Mobile phase B	acetonitr	rile			
Gradient	t/min	% A	%В		
	0.0	100	0		
	5.0	0	100		
Flow rate	1.0 mL/r	min			
Column temperature	40° C				
Injection volume	10 µL				

Compound	Capecitabine
Precision (%RSD)	2.3
% Recovery	73.2

MS conditions

Instrumentation	Thermo Scientific TSQ Vantage
Ionization conditions	HESI
Polarity	Negative
Spray voltage	2500V
Vaporizer temp	350° C
Sheath gas pressure	75 psi
lon sweep pressure	0.5 psi
Aux gas pressure	45 psi
Capillary temp	300° C
Declustering voltage	0 V
Collision pressure	1.5
Cycle time (s)	0.5
Q1 (FWHM)	0.7
Q3 (FWHM)	0.7

Capecitabine

Compound	Capecitabine	Capecitabine-D8
Parent (m/z)	358.3	366.0
Products (m/z)	154.2	153.7
Collision energy (eV)	21	21
S-lens	94	103

Summary

Compared to conventional SPE loose-packed products, SOLA products deliver:

- significantly increased reproducibility
- more consistent and higher recoveries
- high levels of extract cleanliness
- reduced solvent requirements
- increased sensitivity
- greater sample throughput

In today's demanding laboratory environment, where reproducibility, certainty of results and cost saving are fundamental requirements, SOLA products are an indispensible tool to provide confidence and first-time/every-time success in the analytical process.

Conventional SPE is no longer an option. Join the revolution with SOLA products.

Product information

SOLA products are available in 10 mg/mL cartridge and 10 mg/2 mL 96 well plate formats.

SOLA SPE Cartridges

Description	Bed weight	Column volume (mL)	Cat. no.	Quantity
SOLA HRP	10 mg	1 mL	60109-001	100 pk
SOLA SCX	10 mg	1 mL	60109-002	100 pk
SOLA SAX	10 mg	1 mL	60109-003	100 pk
SOLA WCX	10 mg	1 mL	60109-004	100 pk
SOLA WAX	10 mg	1 mL	60109-005	100 pk

SOLA 96 Well Plates

Description	Bed weight	Column volume (mL)	Cat. no.	Quantity
SOLA HRP	10 mg	1 mL	60309-001	1
SOLA SCX	10 mg	1 mL	60309-002	1
SOLA SAX	10 mg	1 mL	60309-003	1
SOLA WCX	10 mg	1 mL	60309-004	1
SOLA WAX	10 mg	1 mL	60309-005	1

For more information on method development and applications visit **thermofisher.com/solaspe**

Our unmatched portfolio and experience in applications and method development will guide you through any challenge, on any instrument. Discover the most comprehensive array of chromatography consumables and environmental sampling products available.

Environmental sampling

Reagents and standards

Vials and closures

GC columns and accessories

Sample preparation

HPLC and LC-MS columns

Find more resources at thermofisher.com/chromexpert

Find more consumables at thermofisher.com/chromatographyconsumables

thermo scientific

Expect reproducible results with sample prep, columns and vials

Don't see what you need? We would be happy to discuss your specific requirements. Please contact your local sales representative for custom orders.

Learn more about SOLA and SOLAµ at thermofisher.com/solaspe

© 2019 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all locations. Please consult your local sales representatives for details. **TG21197-EN 1219S**

