The Analysis of Human Haemoglobin Variants using Mass Spectrometry

Brian N. Green

Edited by Michael R. Morris & Jonathan P. Williams

The Analysis of Human Haemoglobin Variants using Mass Spectrometry

Brian N. Green

Edited by Michael R. Morris & Jonathan P. Williams

Foreword

This book represents a collation of the haemoglobin studies of Brian Green following the introduction of the Electrospray Ionisation (ESI) technique in VG Biotech in 1988. The data presented were typically acquired on a VG/Micromass triple quadrupole instrument, and the data processed using a MassLynx data system.

One of the challenges of developing analytical approaches for the analysis of specimens of human origin is the availability of 'interesting' samples, and this work would not have been possible without the collaboration of a wide number of individuals who worked with Brian from the early days until his retirement from laboratory work in 2018.

Thanks and acknowledgements are due to Barbara Wild, Adrian Stephens. Ron Oliver, David Roper, David Rees, Cedric Shackleton, Ewa Witkowska, Lisa Farrar, Debbie Mantio, Norman Roberts, Tim Reynolds and Dilip Rai, among many, many others.

Thanks, also, to Mark McDowall for his artistic input and support with the covers.

Mike Morris Jon Williams

Summer 2021

DISCLAIMER

This work has been published to highlight Brian Green's studies of haemoglobin by mass spectrometry over a thirty-year period from 1988 to 2018.

The book is intended as a reference work to support researchers in the field and to promote the use of mass spectrometry for the identification of haemoglobin variants in the biomedical field, and has been made available by Waters Corporation to support such studies.

The approach is not promoted as a diagnostic device but is intended to support the provision of confirmatory information.

Published by: Micromass UK Ltd, Stamford Avenue, Wilmslow, Cheshire SK9 4AX, UK.

© Waters Corporation 2021

ISBN: 978-1-5262-0895-8

All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means except with the prior permission of the publisher. Preface

A brief history.

When identifying human haemoglobin (Hb) variants by mass spectrometry, the most important parameter associated with the variant chain is an accurate value of its molecular weight (mass) from which the mass change of the variant from normal is derived. Then, based on this mass change and using Genetic Code Tables, a limited number of possible amino acid mutations may be proposed. The first indication that it might be possible to accurately determine the masses of the globin chains in human haemoglobin by mass spectrometry came in 1988, when Covey *et al*⁽¹⁾ published a groundbreaking paper that showed an ion evaporation spectrum of myoglobin (sequence mass 16,951.5 Da) containing a series of ten multiply protonated molecules from which the mass was determined as 16,949.5 ±0.9 Da SD. Other workers soon realised the potential of this new technique as part of the procedure for identifying Hb variants. As early as 1990, Green et $al^{(2)}$ had measured the masses of several normal and variant globin chains using a triple quadrupole instrument of modest mass range (m/z 2,000). They called the technique Electrospray MS. Subsequently, the technique came to be known as Electrospray Ionization Mass Spectrometry, ESI-MS, which is the name used throughout this book.

Another early indication of the potential of the technique in human haemoglobin analysis was the identification in 1991 of the clinically significant and electrophoretically silent variant, Hb Quebec-Chori, $\beta 87$ Thr \rightarrow Ile⁽³⁾. ESI-MS played a major role in identifying this variant, which had not been previously reported in the literature.

In Covey *et al*⁽¹⁾, the mass of myoglobin was determined by averaging the values calculated from the ions in a series of multiply protonated molecules. Unfortunately, when this method was applied to human haemoglobin analysis, minor components such as the δ -chain, glycated and glutathionylated chains were difficult to assess. In late 1992, however, the maximum entropy based software (MaxEnt)⁽⁴⁾ developed at the University of Cambridge by John Skilling, was introduced to disentangle the multiply charged series, and present the results on a molecular weight (mass) scale. This development revolutionised the analysis of the globin chains in diluted blood. MaxEnt is automatic and measures minor components down to ~1% relative abundance. Furthermore, by internally calibrating* the mass scale using one of the normal major chains, the precision in measuring the masses of the other major chains is unrivalled. (Internal calibration: A procedure whereby the mass scale of the multiply charged data from each sample is calibrated on itself before disentangling by MaxEnt.) For example, the precision in determining the mass of the β chain when using the α -chain for internal calibration has generally been found to be better than ± 0.05 Da SD, a hitherto undreamed of precision for measuring the mass of a globin chain in 1992. With these developments, the change in the mass of the variant globin chain from normal could then be used to reliably derive possible amino acid changes from the Genetic Code Tables.

In late 1996, the author of this book and Barbara Wild, then at King's College Hospital, London, began a programme of experiments to identify haemoglobinopathies that had been detected by traditional methods such as cation exchange-HPLC or isoelectric focusing. At this time, blood samples were simply diluted 500-fold in denaturing solvent and introduced directly into the mass spectrometer. Consequently, sodium and potassium adducts of the globin chains were produced from the salts present, which interfered with measurement of the δ -chain and also sometimes with that of the variant-chain. They were eliminated by briefly shaking the 500-fold diluted blood solution with cation exchange resin beads before introduction into the mass spectrometer. By 2001, this desalting step had been incorporated into a routine procedure for analysing the intact globin chains in whole blood⁽⁵⁾. A rapid (30-minute) method for routinely digesting the globin chains in diluted blood with trypsin was also developed, since tryptic digests are generally needed for identifying the site of the mutation. By $2001^{(5)}$, 250 samples, which were suspected by traditional methods to contain an unidentified abnormality, had been analysed. Variants were positively identified in 95% of the samples. Hb S and common variants such as Hb C and Hb E were generally not submitted for analysis by mass spectrometry, provided they had been reliably identified by traditional means. Ninetynine different abnormalities including 36α - and 59B-chain variants were identified and subsequently confirmed by tandem mass spectrometry (see Figure 4 in reference 5). Fifteen of these variants had not been previously reported in the literature, i.e. were novel when first encountered by the author of this book. This programme was discontinued in 2001 with the publication of reference 5.

However, there was a strong interest from several UK hospitals for a service to be provided for identifying haemoglobinopathies, and over the period from 2001-2012, ~4,300 further samples were analysed by the author in a programme supported by Waters Corporation. The abnormalities were identified in more than 98% of these cases. By December 2012, when this service was discontinued, 329 different variants had been identified, namely; 155α (46 novel), 166 β (31 novel), 1 δ , 2^G γ and 5 hybrids. 77* were novel when first encountered by the author. With few exceptions (<2%), all the samples originated from patients resident in the UK.

*Includes novel variants that were first identified by the author of this book but were subsequently described and named elsewhere.

Brian N Green Wilmslow, June 2017

References

⁽¹⁾ T.R. Covey, R.F. Bonner, B.I. Shushan and J. Henion, The determination of protein, oligonucleotide and peptide molecular weights by ion-spray mass spectrometry, Rapid Commun.Mass Spectrom. **2**, 249-256 (1988).

⁽²⁾ B.N. Green, R.W.A. Oliver, A.M. Falick, C.H.L. Shackleton, E. Roitman and H.E. Witkowska, Electrospray MS, LSIMS and MS/MS for the rapid detection and characterization of variant hemoglobins, in A.L. Burlingame and J.A. McCloskey (eds), Biological Mass Spectrometry, Elsevier, Amsterdam, 1990, pp129-146.

⁽³⁾ H.E. Witkowska, B.H. Lubin, Y. Beuzard, S. Baruchel, *et al.*, Sickle Cell Disease in a Patient with Sickle Cell Trait and Compound Heterozygosity for Hemoglobin S and Hemoglobin Quebec-Chori, N.Engl.J.Med., **325**, 1150-1154 (1991).

⁽⁴⁾ A.G. Ferrige, M.J. Seddon, B.N. Green, S.A. Jarvis and J. Skilling, Disentangling electrospray spectra with maximum entropy, Rapid Commun. Mass Spectrom. **6**, 707-711 (1992).

⁽⁵⁾ B.J. Wild, B.N. Green, E.K. Cooper, M.R.A. Lalloz, S. Erten, A.D. Stephens and D.M. Layton, Rapid identification of hemoglobin variants by electrospray ionization mass spectrometry, Blood Cells, Molecules and Diseases, **27**, 691-704 (2001).

CONTENTS

Section	Title	Page
1	The five steps in detecting and identifying human haemoglobin variants by charge- sensitive chromatographic means and electrospray ionization mass spectrometry	1
2	The analysis of the globin chains in human haemoglobin by electrospray ionization mass spectrometry	23
3	The detection and identification of the hybrid haemoglobins by electrospray ionization mass spectrometry	47
4	Digestion of the haemoglobin in blood with trypsin, nomenclature and the peptides produced in practice	73
5	Tandem mass spectrometry	151
6	Variants identified by electrospray ionization mass spectrometry	461
7	References	475

SECTION 1

1.1. The five steps in detecting and identifying human haemoglobin variants by charge sensitive	
chromatographic means and electrospray ionization mass spectrometry	2
Table 1.1.1. The atomic weights of the elements associated with haemoglobin analysis	3
1.2. Haemoglobin	4
1.3. The tandem mass spectrometer	5
1.4. Basic information on the various chains in human haemoglobin	6
Table 1.4.1. The masses and sequences of the chains in adult haemoglobin	6
Table 1.4.2. The masses and sequences of the chains in foetal haemoglobin	7
Table 1.4.3 The masses and sequences of the chains in embryonic haemoglobin	8
Table 1.4.4. The amino acid composition of the globin chains in adult, foetal and embryonic haemoglobin	9
1.5. Data for the calculation of the molecular masses of peptides and proteins for use in mass spectrometry	. 10
Table 1.5.1. The masses of some terminal groups	. 10
Table 1.5.2. The mass changes due to some post-translational modifications of haemoglobin chain	ns. . 10
Table 1.5.3. The masses and compositions of the twenty commonly occurring amino acid residues	s . 11
1.6. DNA Information for haemoglobin	. 12
Table 1.6.1. The DNA Codons for the twenty commonly occurring amino acids	. 12
Table 1.6.2. Nominal mass and amino acid changes genetically governed by single base changes in the nucleotide codon.	in . 13
Table 1.6.3. The codon sequence of the haemoglobin α_1 - and α_2 -chains	. 14
Table 1.6.4. The codon sequence of the human β-chain	. 15
1.7. Reagents and hardware required for identifying variants by ESI-MS	. 16
1.8. Files for installation into MassLynx software	. 17
Table 1.8.1. Reference files for mass scale calibration	. 17
Table 1.8.2. Sequence of some globin chains	. 17
1.9. Step 1. Cation exchange-HPLC data and its use in identifying human haemoglobin variants by electrospray ionization mass spectrometry	. 18

1.1. The five steps in detecting and identifying human haemoglobin variants by charge sensitive chromatographic means and electrospray ionization mass spectrometry

Introduction

The methods described in this book were developed to routinely detect and positively identify human haemoglobin (Hb) variants by Electrospray Ionization Mass Spectrometry (ESI-MS). They are based on previously known techniques, which were time consuming because derivatisation of the cysteines and various chromatographic separations were undertaken before analysis by ESI-MS. These earlier techniques were drastically simplified to reduce sample preparation and analysis times.

To reduce sample preparation time, solutions for ESI-MS analysis were prepared directly from diluted blood, i.e. without purification, without isolating the variant Hb and without derivatising the cysteines prior to enzymatic digestion. The digest time was reduced from several hours to 30 minutes by first denaturing the Hb in the blood samples; a procedure that takes a couple of minutes. Analysis times were minimised by eliminating chromatographic separation of the mixture of peptides produced by enzymatic digestion prior to analysis by ESI-MS. By these means, the average time to identify a variant has been reduced to less than 2 hours, which includes preparing a report. ESI-MS has been found to positively identify the variant in over 98% of the samples found to contain a variant by traditional methods. It also detects and identifies the majority of variants that are silent by these methods. The five analytical steps in detecting and identifying variants are as follows.

Step 1. Most variants are detected during routine screening by traditional charge sensitive techniques, e.g. cation exchange-HPLC (ce-HPLC) or isoelectric focusing (IEF). Some are detected during diabetic monitoring. Variants that are silent by ce-HPLC or IEF are sometimes detected by ESI-MS when they occur together with a variant that is detected by these charge sensitive techniques.

Step 2. Analysis of 500-fold diluted, denatured and desalted blood by ESI-MS gives the molecular weights (masses) of the globin chains present in the sample. The masses of the major components are determined very accurately, so that the mass difference of a variant from normal can be established to the nearest integer. Then, using the genetic code data given in Tables 1.6.1 and 1.6.2, a limited number of possible single amino acid mutations governed by a single base change in the nucleotide codon can be found to fit this mass difference. The masses of variants that result from amino acid deletions, insertions and extensions are also determined at this stage.

Step 3. This section describes the detection and identification of the hybrid haemoglobins, several of which can be identified directly from their mass spectra. Tandem mass spectrometry of the intact hybrid chains is used for confirmation. A table listing the masses and principle product ions of ten hybrid chains is provided. Also shown are the tandem mass spectra of the normal β -, δ - and ${}^{G}\gamma$ -chains

Step 4. ESI-MS analysis of the peptide mixture produced by digestion of 50-fold diluted and denatured blood with trypsin allows the peptide containing the mutation to be identified. Approximately 50% of variants can be identified at this stage. These include variants in which the tryptic peptide contains only one amino acid that can mutate to give the mass change determined in Step 2 by a single base change in the codon. They also include mutations to or from arginine and lysine. The remaining 50% require sequencing of the variant peptide by tandem MS for identification.

Step 5. Sequencing the tryptic peptide containing the mutation by tandem MS allows the variant to be positively identified. The mutation identified in Step 4 can be confirmed by tandem MS, if deemed necessary.

Element	Symbol	Atomic Mass (Da)	Atomic Weight (Da)
Hydrogen	Н	1.00782503	1.00794
Carbon	С	12 (exactly, by definition)	12.0107
Nitrogen	Ν	14.0030740	14.0067
Oxygen	0	15.9949146	15.9994
Sodium	Na	22.9897697	22.989770
Phosphorous	Р	30.9737615	30.973761
Sulphur	S	31.9720707	32.065
Potassium	K	38.9637069	39.0983
Iron	Fe	55.9349418	55.845

Table 1.1.1. The atomic weights of the elements associated with haemoglobin analysis⁽⁶⁾

The atomic masses are the masses of the most abundant isotope of a given element and are used to calculate the monoisotopic masses of small molecules up to \sim 3,000 Da molecular mass. In all cases except iron, the most abundant isotope also has the lowest mass.

The atomic weights are used to calculate the average masses of compounds, mainly proteins, such as the chains in human haemoglobin.

Reference

⁽⁶⁾ J.R. de Laeter, J.K. Bohlke, P. De Bievre, H. Hidaka, H.S. Peiser, K.J.R. Rosman and P.D.P. Taylor, Atomic weights of the elements: Review 2000. Pure Appl. Chem., **75**, 683-800 (2003).

1.2. Haemoglobin.

Human haemoglobin occurs in the red blood cells as a non-covalently assembled tetramer of two dissimilar polypeptide chains (α - and β globin chains), in which each chain is associated non-covalently with a haem group. Its primary functions are to transport oxygen from the lungs to the organs and tissues of the body and carry carbon dioxide from the tissues to the lungs. It performs the former function via the iron atom in each of the four haem groups, which are noncovalently attached to each chain. Each haem can combine reversibly with one dioxygen molecule. The carbon dioxide released by the respiring tissues is too insoluble to be efficiently conveyed to the lungs but is rendered more soluble by combining with water to form a bicarbonate ion and а proton. The deoxyhaemoglobin acts as a buffer, mopping up the protons and tipping the balance towards the formation of soluble bicarbonate. In the lungs the process is reversed. There, as oxygen binds to the haemoglobin, protons are cast off, driving carbon dioxide out of solution so that it can be exhaled. The reaction between carbon dioxide and water is catalysed by the enzyme carbonic anhvdrase.

Normal adult haemoglobin (Hb A) comprises two α -chains of 141 amino acids and two β chains of 146 amino acids non-covalently assembled into a tetramer ($\alpha_2\beta_2h_4$). The average molecular weights (masses) of the individual chains without heme are α : 15,126.38 Da and β : 15,867.24 Da. The mass of the haem group is 616.50 Da.

In normal adults, the principal component is Hb A, which occurs together with a minor (~3%) component, Hb A₂ ($\alpha_2\delta_2h_4$). In babies at birth, the principal component is fetal Hb, Hb F (80-90%), ($\alpha_2\gamma_2h_4$), comprising two or three γ -chains, ${}^{G}\gamma$, ${}^{A}\gamma^{T}$, ${}^{A}\gamma$, with 10-20% of Hb A. Over 6 months of neonatal life, the Hb F gradually decreases to <1%, and Hb A becomes the major

component. The α -chains are encoded by two gene copies on chromosome 16, whilst the non- α -chains are encoded by single gene copies on chromosome 11. One gene of each type is inherited from each parent. In embryonic Hb, which occurs up to approximately 10 weeks from conception, the chains are ζ (zeta, α -like) and ε (epsilon, β -like).

It has been estimated that abnormal haemoglobins (haemoglobinopathies) are carried by approximately 7% of the world population, and that 300-400,000 babies are born each year with severe forms of these diseases⁽⁷⁾. The haemoglobinopathies belong to a group of inherited disorders that are characterised by either reduced synthesis of one or more of the normal globin chains (the thalassaemias) or by the synthesis of one or more structurally abnormal globin chains (the haemoglobin variants).

Variants of any of the major chains can seriously interfere with the function of the assembled tetramer. Currently, the number of variants listed in the Globin Gene Server is in excess of 1,500, and many more are possible. Whilst some variants are clinically significant, most function normally. Nevertheless, once a variant has been detected, it is prudent to identify it, particularly if it occurs in a potential parent, so that appropriate counselling can be given or, if it occurs in a patient with an unexplained abnormal Hb, in order to avoid inappropriate medical treatment due to misdiagnosis.

Reference

⁽⁷⁾ D.J. Weatherall and J.B. Clegg. Inherited haemoglobin disorders: an increasing global health problem. Bulletin of the World Health Organisation, **79**, 704-712 (2001).

1.3. The tandem mass spectrometer

Figure 1.3.1. Schematic diagram of a tandem mass spectrometer

The tandem mass spectrometer can be operated in two modes.

Mode 1. As a simple mass spectrometer (ESI-MS)

The sample in solution is ionized by electrospray ionization in the Ion Source and the resulting ions are separated according to their mass (actually mass-to-charge ratio) by Mass Analyser I, which is scanned to give a mass spectrum. These ions then pass directly to the Ion Detector, where they are converted into electrical signals, which are recorded as a mass spectrum in the associated data system. Mass spectra are produced from either intact globin chains or from the peptides produced by digesting the globin chains with trypsin (tryptic peptides). These spectra are then used to determine the masses and relative abundance of the various components in the sample.

Mode 2. As a tandem mass spectrometer (ESI-MS-MS)

As in Mode 1, ions are generated from the sample in solution, but in this case, ions of a particular mass (the precursor mass) are selected by Mass Analyser I and fragmented by collisions with argon gas in the collision cell. The fragment ions (product ions) are then analysed by Mass Analyser II to give a product ion spectrum. In one application, the precursor ions are selected from a tryptic peptide and the resulting product ion spectrum is used to sequence the peptide. In a second application, the precursor is from an intact globin chain and the resulting spectrum used to confirm the identity of the chain.

1.4. Basic information on the various chains in human haemoglobin

The following tables show the amino acid sequences, terminal groups and masses of the chains in adult, foetal and embryonic haemoglobin.

The Human α-chain (alpha-chain).										
N-Terminus = H, C-Terminus = OH.										
Average mas	Average mass = 15,126.3807 Da. Monoisotopic mass = 15,116.8851 Da.									
1	6	11	16	21	26	31	36			
VLSPA	DKTNV	KAAWG	KVGAH	AGEYG	AEALE	RMFLS	FPTTK			
41	46	51	56	61	66	71	76			
TYFPH	FDLSH	GSAQV	KGHGK	KVADA	LTNAV	AHVDD	MPNAL			
81	86	91	96	101	106	111	116			
SALSD	LHAHK	LRVDP	VNFKL	LSHCL	LVTLA	AHLPA	EFTPA			
121	126	131	136	141						
VHASL	DKFLA	SVSTV	LTSKY	R						

The Human β-chain (beta-chain).									
N-Terminus = H, C-Terminus = OH .									
Average mas	s = 15,867.240	6 Da. Monoiso	topic mass $= 13$	5,857.2497 Da					
1	6	11	16	21	26	31	36		
VHLTP	EEKSA	VTALW	GKVNV	DEVGG	EALGR	LLVVY	PWTQR		
41	46	51	56	61	66	71	76		
FFESF	GDLST	PDAVM	GNPKV	KAHGK	KVLGA	FSDGL	AHLDN		
81	86	91	96	101	106	111	116		
LKGTF	ATLSE	LHCDK	LHVDP	ENFRL	LGNVL	VCVLA	HHFGK		
121	126	131	136	141	146				
EFTPP	VQAAY	QKVVA	GVANA	LAHKY	Н				

The Huma	n δ-chain (del	ta-chain).					
N-Terminu:	s = H, C-Termi	nus = OH.					
Average ma	ass = 15,924.31	70 Da. Monois	sotopic mass =	15,914.2494 D	a.		
1	6	11	16	21	26	31	36
VHLTP	EEKTA	VNALW	GKVNV	DAVGG	EALGR	LLVVY	PWTQR
41	46	51	56	61	66	71	76
FFESF	GDLSS	PDAVM	GNPKV	KAHGK	KVLGA	FSDGL	AHLDN
81	86	91	96	101	106	111	116
LKGTF	SQLSE	LHCDK	LHVDP	ENFRL	LGNVL	VCVLA	RNFGK
121	126	131	136	141	146		
EFTPO	MOAAY	OKVVA	GVANA	LAHKY	Н		

The abundance of the δ -chain is approximately 3% of the β -chain in normal adults. It doubles with β^0 -thalassemia trait in otherwise normal adults.

The Human ^G γ-chain (G-gamma-chain).										
N-Terminus = H, C-Terminus = OH .										
Average mas	Average mass = 15,995.2735 Da. Monoisotopic mass = 15,985.2552 Da.									
1	6	11	16	21	26	31	36			
GHFTE	EDKAT	ITSLW	GKVNV	EDAGG	ETLGR	LLVVY	PWTQR			
41	46	51	56	61	66	71	76			
FFDSF	GNLSS	ASAIM	GNPKV	KAHGK	KVLTS	LGDA <u>I</u>	KHLDD			
81	86	91	96	101	106	111	116			
LKGTF	AQLSE	LHCDK	LHVDP	ENFKL	LGNVL	VTVLA	IHFGK			
121	126	131	136	141	146					
EFTPE	VQASW	QKMVT	<u>G</u> VASA	LSSRY	Н					

Table 1.4.2. The masses and sequence	s of the chains in foetal h	aemoglobin
--------------------------------------	-----------------------------	------------

The Human ^A γ ^T -chain (A-gamma-T-chain).										
N-Terminus = H, C-Term	N-Terminus = H, C-Terminus = OH .									
Average mass $= 15,997.2$	460 Da. Monois	sotopic mass =	15,987.2345 D	a.						
1 6	11	16	21	26	31	36				
GHFTE EDKAT	ITSLW	GKVNV	EDAGG	ETLGR	LLVVY	PWTQR				
						-				
41 46	51	56	61	66	71	76				
FFDSF GNLSS	ASAIM	GNPKV	KAHGK	KVLTS	LGDA <u>T</u>	KHLDD				
81 86	91	96	101	106	111	116				
LKGTF AQLSE	LHCDK	LHVDP	ENFKL	LGNVL	VTVLA	IHFGK				
-										
121 126	131	136	141	146						
EFTPE VQASW	QKMVT	<u>A</u> VASA	LSSRY	Н						

The Human	^A γ-chain (A-ga	amma-chain).							
N-Terminus = H , C-Terminus = OH .									
Average mass = 16,009.3004 Da. Monoisotopic mass = 15,999.2709 Da.									
1	6	11	16	21	26	31	36		
GHFTE	EDKAT	ITSLW	GKVNV	EDAGG	ETLGR	LLVVY	PWTQR		
41	46	51	56	61	66	71	76		
FFDSF	GNLSS	ASAIM	GNPKV	KAHGK	KVLTS	LGDA <u>I</u>	KHLDD		
81	86	91	96	101	106	111	116		
LKGTF	AQLSE	LHCDK	LHVDP	ENFKL	LGNVL	VTVLA	IHFGK		
121	126	131	136	141	146				
EFTPE	VQASW	QKMVT	<u>A</u> VASA	LSSRY	Н				

The amino acid residues (75 and 136) that differ between these sequences are underlined. Approximately 10% of each chain is N-acetylated in newborns. These chains also occur in adults with hereditary persistence of foetal haemoglobin (HPFH), and other abnormal conditions. Typical ESI mass spectra of these chains in newborns are given in Davison *et al*⁽⁸⁾

Reference

⁽⁸⁾ A.S Davison, B.N Green, and N.B. Roberts, Fetal haemoglobin: assessment of glycation and acetylation status by electrospray ionization mass spectrometry, Clin. Chem. Lab. Med., **46**, 1230-38 (2008).

The Human ζ -chain (zeta-chain). N-Terminus = CH ₂ CO (fully N-acetylated). C-Terminus = OH.									
Average mas	Average mass = $15.547.8885$ Da. Monoisotopic mass = $15.538.2068$ Da.								
1	6	11	16	21	26	31	36		
SLTKT	ERTII	VSMWA	KISTQ	ADTIG	TETLE	RLFLS	HPQTK		
41	46	51	56	61	66	71	76		
TYFPH	FDLHP	GSAQL	RAHGS	KVVAA	VGDAV	KSIDD	IGGAL		
81	86	91	96	101	106	111	116		
SKLSE	LHAYI	LRVDP	VNFKL	LSHCL	LVTLA	ARFPA	DFTAE		
121	126	131	136	141					
AHAAW	DKFLS	VVSSV	LTEKY	R					

Table 1.4.3 The masses and sequences of the chains in embryonic haemoglobin

The Human ε-chain (epsilon-chain).										
N-Terminus = H , C -Terminus = OH .										
Average mass = 16,071.6578 Da. Monoisotopic mass = 16,061.4296 Da.										
1	6	11	16	21	26	31	36			
VHFTA	EEKAA	VTSLW	SKMNV	EEAGG	EALGR	LLVVY	PWTQR			
41	46	51	56	61	66	71	76			
FFDSF	GNLSS	PSAIL	GNPKV	KAHGK	KVLTS	FGDAI	KNMDN			
81	86	91	96	101	106	111	116			
LKPAF	AKLSE	LHCDK	LHVDP	ENFKL	LGNVM	VIILA	THFGK			
121	126	131	136	141	146					
EFTPE	VQAAW	QKLVS	AVAIA	LAHKY	Н					

These chains occur in the first few weeks of gestation after which time the haemoglobin becomes foetal Hb, i.e. mainly α - and γ -chains (Hb F).

Fully acetylated ζ -chain has been observed by ESI-MS at significant levels in *Hydrops Fetalis* babies, when the α -chain was below the detection level. The dominant components were γ -chains with a lower level of β -chain⁽⁹⁾.

Reference

⁽⁹⁾ M. Bowers, M.F. McMullin, B.N. Green and F. Jones, Hydrops Fetalis secondary to homozygous alpha thalassemia in a very low incidence area, CME Bulletin Haematology, **2**, 54-56 (1999).

				Total
			Re	esidues
Human α-chain				
A (Ala) 21 F (Phe) 7 K (Lys) 11 P (Pro) 7	Т	(Thr)	9	
C (Cys) 1 G (Gly) 7 L (Leu) 18 Q (Gln) 1	V	(Val)	13	
D (Asp) 8 H (His) 10 M (Met) 2 R (Arg) 3	W	(Trp)	1	
E (Glu) 4 I (Ile) 0 N (Asn) 4 S (Ser) 11	Y	(Tyr)	3	141
Human β-chain				
A (Ala) 15 F (Phe) 8 K (Lys) 11 P (Pro) 7	Т	(Thr)	7	
C (Cys) 2 G (Gly) 13 L (Leu) 18 Q (Gln) 3	V	(Val)	18	
D (Asp) 7 H (His) 9 M (Met) 1 R (Arg) 3	W	(Trp)	2	
E (Glu) 8 I (Ile) 0 N (Asn) 6 S (Ser) 5	Y	(Tyr)	3	146
Human δ-chain	_		_	
A (Ala) 15 F (Phe) 8 K (Lys) 11 P (Pro) 6	Т	(Thr)	5	
C (Cys) 2 G (Gly) 13 L (Leu) 18 Q (Gln) 5	V	(Val)	17	
D (Asp) 7 H (His) 7 M (Met) 2 R (Arg) 4	W	(Trp)	2	
E (Glu) 7 I (Ile) 0 N (Asn) 8 S (Ser) 6	Y	(Tyr)	3	146
Human ^G γ-chain	-		10	
A (Ala) 11 F (Phe) 8 K (Lys) 12 P (Pro) 4	Т	(Thr)	10	
C (Cys) 1 G (Gly) 13 L (Leu) 17 Q (Gln) 4	V	(Val)	13	
D (Asp) 8 H (His) 7 M (Met) 2 R (Arg) 3	W	(Trp)	3	
E (Glu) 8 I (Ile) 4 N (Asn) 5 S (Ser) 11	Y	(Tyr)	2	146
Human $A\gamma^{-}$ -chain	T		11	
A (Ala) 12 F (Phe) 8 K (Lys) 12 P (Pro) 4 C (Cm) 1 C (Ch) 12 L (Lys) 17 O (Ch) 4	l V	(1 nr)	11	
C (Cys) I G (Gy) I2 L (Lett) I7 Q (Gin) 4 D (Arr) \mathcal{O} H (Uir) 7 M (Mat) 2 D (Arr) 2	V	(val)	15	
D (Asp) δ H (His) / M (Met) 2 K (Arg) 5 E (Chu) 8 L (Ha) 2 N (Arg) 5 S (Sar) 11	W V	(Trp)	с С	146
E (Giu) 8 1 (IIe) 5 N (Asii) 5 S (Ser) 11	r	(1yr)	2	140
Human Ay akain				
Human " γ -chain A (Ala) 12 E (Phe) 8 K (Lye) 12 P (Pro) 4	т	(Thr)	10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ı V	(111) (Val)	10	
C (Cys) 1 C (Ciy) 12 L (Ecd) 17 Q (Ciii) 4 D (Asp) 8 H (His) 7 M (Met) 2 R (Arg) 3	v W	$(\mathbf{v}\mathbf{a}\mathbf{l})$	3	
E (Glu) 8 E (IIa) A N (Asp) 5 E (Ser) 11	v	(Tryr)	2	146
E (Glu) = 0 $E (lic) + 10 (ASil) = 5 (Sci) = 11$	1	(1 y1)	2	140
Human (-chain				
A (Ala) 16 F (Phe) 7 K (Lys) 9 P (Pro) 5	т	(Thr)	12	
C (Cvs) 1 G (Glv) 6 L (Leu) 17 O (Gln) 3	V	(Val)	11	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	w	(Trn)	2	
E (Glu) 6 I (IIe) 7 N (Asn) 1 S (Ser) 13	Y	(Trr)	3	141
	1	(1)1)	5	111
Human s-chain				
A (Ala) 17 F (Phe) 9 K (Lvs) 14 P (Pro) 6	Т	(Thr)	6	
C (Cys) 1 G (Gly) 9 L (Leu) 16 O (Gln) 3	V	(Val)	13	
D (Asp) 5 H (His) 7 M (Met) 3 R (Arg) 2	W	(Trp)	3	
E (Glu) 9 I (Ile) 5 N (Asn) 7 S (Ser) 9	Y	(Tyr)	2	146

Table 1.4.4. The amino acid composition of the globin chains in adult, foetal and embryonic haemoglobin

1.5. Data for the calculation of the molecular masses of peptides and proteins for use in mass spectrometry

The molecular mass of a normally terminated and unmodified peptide or protein (globin chain) may be calculated by summing the masses of the appropriate amino acid residues from Table 1.5.3, and adding the masses of H and OH for the N- and C-termini, respectively (Table 1.5.1). The masses of some alternative terminal groups are also listed in Table 1.5.1. In cases where cysteines are linked by disulphide bonds, the mass of two hydrogen atoms should be subtracted for each disulphide bond in the molecule. The mass changes due to some post-translational modifications of haemoglobin chains are given in Table 1.5.2.

Table 1.5.1. The masses of some terminal groups

	Composition	Monosiotopic Mass (Da)	Average Mass (Da)
N-Terminal Groups			
Hydrogen	Н	1.00782	1.0079
N-Formyl	HCO	29.00274	29.0183
N-Acetyl	CH ₃ CO	43.01839	43.0452
C-Terminal Groups			
Free acid	OH	17.00274	17.0073
Amide	NH_2	16.01872	16.0226

Table 1.5.2. The mass changes due to some post-translational modifications of haemoglobin chains.

Modification	Monoisotopic Mass Change (Da)	Average Mass Change (Da)
Disulphide bond formation	- 2.01565	-2.0159
Deamidation	0.98402	0.9847
Oxidation of Met	15.99491	15.9994
Acetylation	42.01056	42.0373
Carbamoylation	43.00581	43.0251
Pyruvylation	70.00548	70.0477
Sulphation	79.95682	80.0642
Cysteinylation	119.00410	119.1442
Glycation	162.05282	162.1424
Glutathionylation	305.06816	305.3117

Symbols	Name and Composition	Residue Structure	Monoisotopic Mass (Da)	Average Mass (Da)
Ala, A	Alanine C ₃ H ₅ NO	CH ₃ -NH-ĊH-CO-	71.03711	71.0788
Arg, R	Arginine C ₆ H ₁₂ N ₄ O	СН ₂ -(CH ₂)2-NH-C-NH ₂ -NH-CH-CO- NH	156.10111	156.1876
Asn, N	Asparagine C ₄ H ₆ N ₂ O ₂	CH ₂ –CONH ₂ –NH-CH-CO-	114.04293	114.1039
Asp, D	Aspartic Acid C ₄ H ₅ NO ₃	CH ₂ –COOH –NH-ĊH-CO–	115.02694	115.0886
Cys, C	Cysteine C ₃ H ₅ NOS	CH ₂ –SH -NH-ĊH-CO-	103.00919	103.1448
Gln, Q	Glutamine C5H8N2O2	CH ₂ -CH ₂ -CONH ₂ -NH-CH-CO-	128.05858	128.1308
Glu, E	Glutamic Acid C ₅ H ₇ NO ₃	CH ₂ -CH ₂ -COOH -NH-CH-CO-	129.04259	129.1155
Gly, G	Glycine C ₂ H ₃ NO	-NH-CH ₂ -CO-	57.02146	57.0520
His, H	Histidine C ₆ H ₇ N ₃ O	$CH_2 - \underbrace{ \begin{pmatrix} H \\ H \\ N \end{pmatrix}}_{-NH-CH-CO-}^{N}$	137.05891	137.1412
Ile, I	Isoleucine C ₆ H ₁₁ NO	CH ₃ -CH-CH ₂ -CH ₃ -NH-CH-CO-	113.08406	113.1595
Leu, L	Leucine C ₆ H ₁₁ NO	CH–CH ₂ -(CH ₃) ₂ -NH-CH-CO-	113.08406	113.1595
Lys, K	Lysine C ₆ H ₁₂ N ₂ O	CH ₂ -(CH ₂) ₃ -NH ₂ -NH-ĊH-CO-	128.09496	128.1742
Met, M	Methionine C5H9NOS	CH ₂ -CH ₂ -S-CH ₃ -NH-CH-CO-	131.04049	131.1986
Phe, F	Phenylalanine C ₉ H ₉ NO	CH ₂ -NH-CH-CO-	147.06841	147.1766
Pro, P	Proline C5H7NO	-N-CH-CO-	97.05276	97.1167
Ser, S	Serine C ₃ H ₅ NO ₂	CH ₂ -OH -NH-CH-CO-	87.03203	87.0782
Thr, T	Threonine C ₄ H ₇ NO ₂	HO-CH-CH ₃ -NH-CH-CO-	101.04768	101.1051
Trp, W	$\begin{array}{c} Tryptophan\\ C_{11}H_{10}N_2O \end{array}$	-NH-CH-CO-	186.07931	186.2133
Tyr, Y	Tyrosine C9H9NO2	CH2-CH-OH -NH-CH-CO-	163.06333	163.1760
Val, V	Valine C₅H9NO	CH(CH3)2 -NH-CH-CO-	99.06841	99.1326

Table 1.5.3. The masses and compositions of the twenty commonly occurring amino acid residues

1.6. DNA Information for haemoglobin

Amino Acid	Codon	Amino Acid	Codon	Amino Acid	Codon
Alanine	GCT	Glycine	GGT	Proline	CCT
Ala, A	GCC	Gly, G	GGC	Pro, P	CCC
	GCA		GGA		CCA
	GCG		GGG		CCG
Arginine	CGT	Histidine	CAT	Serine	TCT
Arg, R	CGC	His, H	CAC	Ser, S	TCC
	CGA				TCA
	CGG				TCG
	AGA				AGT
	AGG				AGC
Asparagine	AAT	Isoleucine	ATT	Threonine	ACT
Asn, N	AAC	Ile, I	ATC	Thr, T	ACC
			ATA		ACA
					ACG
Aspartic Acid	GAT	Leucine	TTA	Tryptophan	TGG
Asp, D	GAC	Leu, L	TTG	Trp, W	
			CTT		
			CTC		
			СТА		
			CTG		
Cysteine	TGT	Lysine	AAA	Tyrosine	TAT
Cys, C	TGC	Lys, K	AAG	Tyr, Y	TAC
Glutamine	CAA	Methionine	ATG	Valine	GTT
Gln, Q	CAG	Met, M		Val, V	GTC
					GTA
					GTG
Glutamic Acid	GAA	Phenylalanine	TTT	Chain	TAA
Glu, E	GAG	Phe, F	TTC	termination	TAG
					TGA
ATG also serves	as a chain in	itiation codon.			
For RNA, replac	e T by U.				

Table 1.6.1. The DNA Codons for the twenty commonly occurring amino acids

The five major DNA/RNA bases:

HN C CH

Uracil (U)

Thymine (T)

Cytosine (C)

Guanine (G)

Adenine (A)

Table 1.6.2. Nominal mass and amino acid changes genetically governed by single base changes in the nucleotide codon.

Mass Change (Da)	Amino Acid Change	Mass Change (Da)	Amino Acid Change	Mass Change (Da)	Amino Acid Change
0	$Gln \leftrightarrow Lys$	10	Ile \leftrightarrow Met	40	$Pro \leftrightarrow His$
0	Ile \leftrightarrow Leu	18	Leu \leftrightarrow Met	42	$\operatorname{Gly} \leftrightarrow \operatorname{Val}$
	$Asn \leftrightarrow Asp$	19	$\operatorname{His} \leftrightarrow \operatorname{Arg}$	12	Ile \leftrightarrow Arg
1	$\operatorname{Gln} \leftrightarrow \operatorname{Glu}$	22	$Asp \leftrightarrow His$	45	Leu \leftrightarrow Arg
1	Ile \leftrightarrow Asn	23	$Asn \leftrightarrow His$	44	Ala ↔ Asp
	$Lys \leftrightarrow Glu$	24	Leu \leftrightarrow His	44	$Cys \leftrightarrow Phe$
3	$Lys \leftrightarrow Met$	25	$\mathrm{Met}\leftrightarrow\mathrm{Arg}$	46	$Gly \leftrightarrow Cys$
4	$\operatorname{Pro} \leftrightarrow \operatorname{Thr}$		Ala \leftrightarrow Pro	18	$Asp \leftrightarrow Tyr$
9	$\operatorname{Gln} \leftrightarrow \operatorname{His}$	26	$His \leftrightarrow Tyr$	40	$Val \leftrightarrow Phe$
10	$Ser \leftrightarrow Pro$	20	$Ser \leftrightarrow Ile$	49	$Asn \leftrightarrow Tyr$
12	$\mathrm{Thr}\leftrightarrow\mathrm{Ile}$		$Ser \leftrightarrow Leu$	53	$Cys \leftrightarrow Arg$
13	$\operatorname{Thr} \leftrightarrow \operatorname{Asn}$	27	$Ser \leftrightarrow Asn$	55	$\operatorname{Thr} \leftrightarrow \operatorname{Arg}$
14	$Asn \leftrightarrow Lys$	21	Thr \leftrightarrow Lys	58	Ala \leftrightarrow Glu
	$Asp \leftrightarrow Glu$		Ala \leftrightarrow Val	50	$Gly \leftrightarrow Asp$
	$\operatorname{Gly} \leftrightarrow \operatorname{Ala}$	28	$\operatorname{Gln} \leftrightarrow \operatorname{Arg}$	59	$Pro \leftrightarrow Arg$
14	$\operatorname{Ser} \leftrightarrow \operatorname{Thr}$		$Lys \leftrightarrow Arg$	60	$Cys \leftrightarrow Tyr$
	$Val \leftrightarrow Ile$		Ala \leftrightarrow Thr	00	Ser \leftrightarrow Phe
	$Val \leftrightarrow Leu$		$\operatorname{Arg} \leftrightarrow \operatorname{Trp}$	69	$\operatorname{Ser} \leftrightarrow \operatorname{Arg}$
15	Ile \leftrightarrow Lys	30	$\operatorname{Gly} \leftrightarrow \operatorname{Ser}$	72	$\operatorname{Gly} \leftrightarrow \operatorname{Glu}$
15	$\mathrm{Leu}\leftrightarrow\mathrm{Gln}$		$\mathrm{Thr} \leftrightarrow \mathrm{Met}$	73	Leu \leftrightarrow Trp
	Ala \leftrightarrow Ser		$Val \leftrightarrow Glu$	76	$Ser \leftrightarrow Tyr$
	Phe \leftrightarrow Tyr	31	$Pro \leftrightarrow Gln$	83	$Cys \leftrightarrow Trp$
16	$Pro \leftrightarrow Leu$	32	$Val \leftrightarrow Met$	00	$\operatorname{Gly} \leftrightarrow \operatorname{Arg}$
	$Ser \leftrightarrow Cys$	34	Ile \leftrightarrow Phe	73	$Ser \leftrightarrow Trp$
	$Val \leftrightarrow Asp$	54	Leu \leftrightarrow Phe	129	$Gly \leftrightarrow Trp$

Amino acid changes from left to right give a mass increase, and changes from right to left give a mass decrease, except for $Gln \leftrightarrow Lys$ and $Ile \leftrightarrow Leu$, which give no mass change.

The amino acid changes given above can occur by at least one single base change in a codon. However, not necessarily all the codons from a given amino acid can mutate in this way. For example, the codons for Ala (GCT, GCC, GCA and GCG) can all mutate to Val (GTT, GTC, GTA and GTG) by a single base change, but only the last two can mutate in this way to Glu (GAA and GAG).

Example. A blood sample was analysed by ESI-MS to reveal a variant α -chain that was 58 Da heavier than normal, implying the mutation is either Ala \rightarrow Glu or Gly \rightarrow Asp. A tryptic digest showed that the mutation occurred in the α T(12-13) peptide, which has the following sequence:

$\begin{array}{cccccc} GCC & GCC & GCG & GCC & GCT \\ \alpha 100 & 110 & 111 & 115 & 120 & 123 & 130 \\ LLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSK \end{array} \alpha 139$

Since there is no Gly in this peptide, the mutation Gly \rightarrow Asp can be eliminated. Of the six Ala in this peptide, only the one at $\alpha 120$, i.e. J-Meerut, can occur by a single base change in the codon to give Glu (GAG). All the others require two changes, and are therefore extremely unlikely.

ValLeuGTGCTG1314AlaTrpGCCTGG2526GlyAlaGGTGCG3738ProThrCCCACC4950SerHisAGCCACC6162LysValAAGGTG7374ValAspGTGGAC8586AspLeuGACCTG9798	Ser TCT 15 Gly GGT 27 Glu GAG 39 Thr ACC 51 Gly GGC 63 Ala GCC	Pro CCT 16 Lys AAG 28 Ala GCC 40 Lys AAG 52 Ser TCT 64 Asp GAC	Ala GCC 17 Val GTC 29 Leu CTG 41 Thr ACC 53 Ala GCC 65 Ala GCG	Asp GAC 18 Gly GGC 30 Glu GAG 42 Tyr TAC 54 Gln CAG 66 Leu CTG	Lys AAG 19 Ala GCG 31 Arg AGG 43 Phe TTC 55 Val GTT 67 Thr ACC	Thr ACC 20 His CAC 32 Met ATG 44 Pro CCG 56 Lys AAG 68 Asn AAC	Asn AAC 21 Ala GCT 33 Phe TTC 45 His CAC 57 Gly GGC 69 Ala GCC	Val GTC 22 Gly GGC 34 Leu CTG 46 Phe TTC 58 His CAC 70 Val GTG	Lys AAG 23 Glu GAG 35 Ser TCC 47 47 47 Asp GAC 59 Gly GGC 71 Ala GCG	Ala GCC 24 Tyr TAT 36 Phe TTC 48 Leu CTG 60 Lys AAG 72 His CAC
GTGCTG1314AlaTrpGCCTGG2526GlyAlaGGTGCG3738ProThrCCCACC4950SerHisAGCCAC6162LysValAAGGTG7374ValAspGTGGAC8586AspLeuGACCTG9798	TCT 15 Gly GGT 27 Glu GAG 39 Thr ACC 51 Gly GGC 63 Ala GCC	CCT 16 Lys AAG 28 Ala GCC 40 Lys AAG 52 Ser TCT 64 Asp GAC	GCC 17 Val GTC 29 Leu CTG 41 Thr ACC 53 Ala GCC 65 Ala GCG	GAC 18 Gly GGC 30 Glu GAG 42 Tyr TAC 54 Gln CAG 66 Leu CTG	AAG 19 Ala GCG 31 Arg AGG 43 Phe TTC 55 Val GTT 67 Thr ACC	ACC 20 His CAC 32 Met ATG 44 Pro CCG 56 Lys AAG 68 ASN AAC	AAC 21 Ala GCT 33 Phe TTC 45 His CAC 57 Gly GGC 69 Ala GCC	GTC 22 Gly GGC 34 Leu CTG 46 Phe TTC 58 His CAC 70 Val GTG	AAG 23 Glu GAG 35 Ser TCC 47 Asp GAC 59 Gly GGC 71 Ala GCG	GCC 24 Tyr TAT 36 Phe TTC 48 Leu CTG 60 Lys AAG 72 His CAC
13 14 Ala Trp GCC TGG 25 26 Gly Ala GGT GCG 37 38 Pro Thr CCC ACC 49 50 Ser His AGC CAC 61 62 Lys Val AAG GTG 73 74 Val Asp GTG GAC 85 86 Asp Leu GAC CTG 97 98	15 Gly GGT 27 Glu GAG 39 Thr ACC 51 Gly GGC 63 Ala GCC	16 Lys AAG 28 Ala GCC 40 Lys AAG 52 Ser TCT 64 Asp GAC	17 Val GTC 29 Leu CTG 41 Thr ACC 53 Ala GCC 65 Ala GCG	18 Gly GGC 30 Glu GAG 42 Tyr TAC 54 Gln CAG 66 Leu CTG	19 Ala GCG 31 Arg AGG 43 Phe TTC 55 Val GTT 67 Thr ACC	20 His CAC 32 Met ATG 44 Pro CCG 56 Lys AAG 68 ASn AAC	21 Ala GCT 33 Phe TTC 45 His CAC 57 Gly GGC 69 Ala GCC	22 Gly GGC 34 Leu CTG 46 Phe TTC 58 His CAC 70 Val GTG	23 Glu GAG 35 Ser TCC 47 Asp GAC 59 Gly GGC 71 Ala GCG	24 Tyr TAT 36 Phe TTC 48 Leu CTG 60 Lys AAG 72 His CAC
1314AlaTrpGCCTGG2526GlyAlaGGTGCG3738ProThrCCCACC4950SerHisAGCCAC6162LysValAAGGTG7374ValAspGTGGAC8586AspLeuGACCTG9798	Gly GGT 27 Glu GAG 39 Thr ACC 51 Gly GGC 63 Ala GCC	Lys AAG 28 Ala GCC 40 Lys AAG 52 Ser TCT 64 Asp GAC	Val GTC 29 Leu CTG 41 Thr ACC 53 Ala GCC 65 Ala GCG	Gly GGC 30 Glu GAG 42 Tyr TAC 54 GIn CAG 66 Leu CTG	Ala GCG 31 Arg AGG 43 Phe TTC 55 Val GTT 67 Thr ACC	20 His CAC 32 Met ATG 44 Pro CCG 56 Lys AAG 68 Asn AAC	Ala GCT 33 Phe TTC 45 His CAC 57 Gly GGC 69 Ala GCC	Gly GGC 34 Leu CTG 46 Phe TTC 58 His CAC 70 Val GTG	25 Glu GAG 35 Ser TCC 47 47 Asp GAC 59 Gly GGC 71 Ala GCG	Tyr TAT 36 Phe TTC 48 Leu CTG 60 Lys AAG 72 His CAC
All GCCTGG2526GlyAlaGGTGCG3738ProThrCCCACC4950SerHisAGCCAC6162LysValAAGGTG7374ValAspGTGGAC8586AspLeuGACCTG9798	GGT GGT 27 Glu GAG 39 Thr ACC 51 Gly CGGC 63 Ala GCC	AAG 28 Ala GCC 40 Lys AAG 52 Ser TCT 64 Asp GAC	GTC 29 Leu CTG 41 Thr ACC 53 Ala GCC 65 Ala GCG	30 GGC 30 Glu GAG 42 Tyr TAC 54 Gln CAG 66 Leu CTG	GCG GCG 31 Arg AGG 43 Phe TTC 55 Val GTT 67 Thr ACC	32 Met ATG 44 Pro CCG 56 Lys AAG 68 Asn AAC	GCT 33 Phe TTC 45 His CAC 57 Gly GGC 69 Ala GCC	34 Leu CTG 46 Phe TTC 58 His CAC 70 Val GTG	GAG 35 Ser TCC 47 Asp GAC 59 Gly GGC 71 Ala GCG	36 Phe TTC 48 Leu CTG 60 Lys AAG 72 His CAC
25 26 Gly Ala GGT GCG 37 38 Pro Thr CCC ACC 49 50 Ser His AGC CACC 61 62 Lys Val AAG GTG 73 74 Val Asp GTG GAC 85 86 Asp Leu GAC CTG 97 98	27 Glu GAG 39 Thr ACC 51 Gly GGC 63 Ala GCC	28 Ala GCC 40 Lys AAG 52 Ser TCT 64 Asp GAC	29 Leu CTG 41 Thr ACC 53 Ala GCC 65 Ala GCG	30 Glu GAG 42 Tyr TAC 54 Gln CAG 66 Leu CTG	31 Arg AGG 43 Phe TTC 55 Val GTT 67 Thr ACC	32 Met ATG 44 Pro CCG 56 Lys AAG 68 Asn AAC	33 Phe TTC 45 His CAC 57 Gly GGC 69 Ala GCC	34 Leu CTG 46 Phe TTC 58 His CAC 70 Val GTG	35 Ser TCC 47 Asp GAC 59 Gly GGC 71 Ala GCG	36 Phe TTC 48 Leu CTG 60 Lys AAG 72 His CAC
2526GlyAlaGGTGCG3738ProThrCCCACC4950SerHisAGCCAC6162LysValAAGGTG7374ValAspGTGGAC8586AspLeuGACCTG9798	27 Glu GAG 39 Thr ACC 51 Gly GGC 63 Ala GCC	28 Ala GCC 40 Lys AAG 52 Ser TCT 64 Asp GAC	29 Leu CTG 41 Thr ACC 53 Ala GCC 65 Ala GCG	30 Glu GAG 42 Tyr TAC 54 Gln CAG 66 Leu CTG	31 Arg AGG 43 Phe TTC 55 Val GTT 67 Thr ACC	32 Met ATG 44 Pro CCG 56 Lys AAG 68 ASN AAC	33 Phe TTC 45 His CAC 57 Gly GGC 69 Ala GCC	34 Leu CTG 46 Phe TTC 58 His CAC 70 Val GTG	35 Ser TCC 47 Asp GAC 59 Gly GGC 71 Ala GCG	36 Phe TTC 48 Leu CTG 60 Lys AAG 72 His CAC
GlyAlaGGTGCG3738ProThrCCCACC4950SerHisAGCCAC6162LysValAAGGTG7374ValAspGTGGAC8586AspLeuGACCTG9798	Glu GAG 39 Thr ACC 51 Gly GGC 63 Ala GCC	Ala GCC 40 Lys AAG 52 Ser TCT 64 Asp GAC	Leu CTG 41 Thr ACC 53 Ala GCC 65 Ala GCG	Glu GAG 42 Tyr TAC 54 Gln CAG 66 Leu CTG	Arg AGG 43 Phe TTC 55 Val GTT 67 Chr ACC	Met ATG 44 Pro CCG 56 Lys AAG 68 Asn AAC	Phe TTC 45 His CAC 57 Gly GGC 69 Ala GCC	Leu CTG 46 Phe TTC 58 His CAC 70 Val GTG	Ser TCC 47 Asp GAC 59 Gly GGC 71 Ala GCG	Phe TTC 48 Leu CTG 60 Lys AAG 72 His CAC
GGTGCG3738ProThrCCCACC4950SerHisAGCCAC6162LysValAAGGTG7374ValAspGTGGAC8586AspLeuGACCTG9798	GAG 39 Thr ACC 51 Gly GGC 63 Ala GCC	GCC 40 Lys AAG 52 Ser TCT 64 Asp GAC	CTG 41 Thr ACC 53 Ala GCC 65 Ala GCG	GAG 42 Tyr 7AC 54 Gln CAG 66 Leu CTG	AGG 43 Phe TTC 55 Val GTT 67 Chr ACC	ATG 44 Pro CCG 56 Lys AAG 68 ASN AAC	TTC 45 His CAC 57 Gly GGC 69 Ala GCC	CTG 46 Phe TTC 58 His CAC 70 Val GTG	TCC 47 Asp GAC 59 Gly GGC 71 Ala GCG	TTC 48 Leu CTG 60 Lys AAG 72 His CAC
37 38 Pro Thr CCC ACC 49 50 Ser His AGC CAC 61 62 Lys Val AAG GTG 73 74 Val Asp GTG GAC 85 86 Asp Leu GAC CTG 97 98	39 Thr ACC 51 Gly GGC 63 Ala GCC	40 Lys AAG 52 Ser TCT 64 Asp GAC	41 Thr ACC 53 Ala GCC 65 Ala GCG	42 Tyr 7AC 54 Gln CAG 66 Leu CTG	43 Phe TTC 55 Val GTT 67 Thr ACC	44 Pro CCG 56 Lys AAG 68 Asn AAC	45 His CAC 57 Gly GGC 69 Ala GCC	46 Phe TTC 58 His CAC 70 Val GTG	47 Asp GAC 59 Gly GGC 71 Ala GCG	48 Leu CTG 60 Lys AAG 72 His CAC
ProThrCCCACC4950SerHisAGCCAC6162LysValAAGGTG7374ValAspGTGGAC8586AspLeuGACCTG9798	Thr ACC 51 Gly GGC 63 Ala GCC	Lys AAG 52 Ser TCT 64 Asp GAC	Thr ACC 53 Ala GCC 65 Ala GCG	Tyr TAC 54 Gln CAG 66 Leu CTG	Phe TTC 55 Val GTT 67 Thr ACC	Pro CCG 56 Lys AAG 68 Asn AAC	His CAC 57 Gly GGC 69 Ala GCC	Phe TTC 58 His CAC 70 Val GTG	Asp GAC 59 Gly GGC 71 Ala GCG	Leu CTG 60 Lys AAG 72 His CAC
CCCACC4950SerHisAGCCAC6162LysValAAGGTG7374ValAspGTGGAC8586AspLeuGACCTG9798	ACC 51 Gly GGC 63 Ala GCC	AAG 52 Ser TCT 64 Asp GAC	ACC 53 Ala GCC 65 Ala GCG	TAC 54 Gln CAG 66 Leu CTG	TTC 55 Val GTT 67 Thr ACC	CCG 56 Lys AAG 68 Asn AAC	CAC 57 Gly GGC 69 Ala GCC	TTC 58 His CAC 70 Val GTG	GAC 59 Gly GGC 71 Ala GCG	CTG 60 Lys AAG 72 His CAC
49 50 Ser His AGC CAC 61 62 Lys Val AAG GTG 73 74 Val Asp GTG GAC 85 86 Asp Leu GAC CTG 97 98	51 Gly GGC 63 Ala GCC	52 Ser TCT 64 Asp GAC	53 Ala GCC 65 Ala GCG	54 Gln CAG 66 Leu CTG	55 Val GTT 67 Thr ACC	56 Lys AAG 68 Asn AAC	57 Gly GGC 69 Ala GCC	58 His CAC 70 Val GTG	59 Gly GGC 71 Ala GCG	60 Lys AAG 72 His CAC
4330SerHisAGCCAC6162LysValAAGGTG7374ValAspGTGGAC8586AspLeuGACCTG9798	Gly GGC 63 Ala GCC	Ser TCT 64 Asp GAC	Ala GCC 65 Ala GCG	Gln CAG 66 Leu CTG	Val GTT 67 Thr ACC	JoLysAAG68AsnAAC	Gly GGC 69 Ala GCC	His CAC 70 Val GTG	Gly GGC 71 Ala GCG	LysAAG72HisCAC
SciInsAGCCAC6162LysValAAGGTG7374ValAspGTGGAC8586AspLeuGACCTG9798	GGC 63 Ala GCC	TCT 64 Asp GAC	GCC 65 Ala GCG	CAG 66 Leu CTG	GTT 67 Thr ACC	AAG 68 Asn AAC	GGC 69 Ala GCC	CAC 70 Val GTG	GGC 71 Ala GCG	AAG 72 His CAC
6162LysValAAGGTG7374ValAspGTGGAC8586AspLeuGACCTG9798	63 Ala GCC	64 Asp GAC	65 Ala GCG	66 Leu CTG	67 Thr ACC	68 Asn AAC	69 Ala GCC	70 Val GTG	71 Ala GCG	72 His CAC
6162LysValAAGGTG7374ValAspGTGGAC8586AspLeuGACCTG9798	63 Ala GCC	64 Asp GAC	65 Ala GCG	66 Leu CTG	67 Thr ACC	68 Asn AAC	69 Ala GCC	70 Val GTG	71 Ala GCG	72 His CAC
LysValAAGGTG7374ValAspGTGGAC8586AspLeuGACCTG9798	Ala GCC	Asp GAC	Ala GCG	Leu CTG	Thr ACC	Asn AAC	Ala GCC	Val GTG	Ala GCG	His CAC
AAGGTG7374ValAspGTGGAC8586AspLeuGACCTG9798	GCC	GAC	GCG	CTG	ACC	AAC	GCC	GTG	GCG	CAC
7374ValAspGTGGAC8586AspLeuGACCTG9798									500	
ValAspGTGGAC8586AspLeuGACCTG9798	75	76	77	78	79	80	81	82	83	84
GTG GAC 85 86 Asp Leu GAC CTG 97 98	Asp	Met	Pro	Asn	Ala	Leu	Ser	Ala	Leu	Ser
85 86 Asp Leu GAC CTG 97 98	C GAC	ATG	CCC	AAC	GCG	CTG	TCC	GCC	CTG	AGC
AspLeuGACCTG9798	87	88	89	90	91	92	93	94	95	96
GAC CTG 97 98	His	Ala	His	Lys	Leu	Arg	Val	Asp	Pro	Val
97 98	CAC	GCG	CAC	AAG	CTT	CGG	GTG	GAC	CCG	GTC
)1)0	00	100	101	102	103	104	105	106	107	108
Asn Phe	Lvs	Leu	Leu	Ser	His	Cvs	Leu	Leu	Val	Thr
AAC TTC	AAG	СТС	СТА	AGC	CAC	TGC	CTG	CTG	GTG	ACC
1010 110						100	010	010	010	
109 110	111	112	113	114	115	116	117	118	119	120
Leu Ala	Ala	His	Leu	Pro	Ala	Glu	Phe	Thr	Pro	Ala
CIG GCC	GCC	CAC	CIC	CCC	GCC	GAG	TIC	ACC	CCT	GCG
121 122	123	124	125	126	127	128	129	130	131	132
Val His	Ala	Ser	Leu	Asp	Lys	Phe	Leu	Ala	Ser	Val
GTG CAC		TCC	CTG	GAC	AAG	TTC	CTG	GCT	TCT	GTG
133 134	GCC		137	138	130	140	141	142	_	
Ser Thr	GCC	136	157	130 C	Lvs	Tvr	Arg	STOP		
AGC ACC	GCC 135 Val	136 Leu	Thr	Ser		-,, -	5	~		
Val His GTG CAC	Ala	Ser TCC	Leu CTG	Asp GAC	Lys AAG	Phe TTC	Leu CTG	Ala GCT	Ser TCT	Val GTG

Table 1.6.3. The codon sequence of the haemoglobin α_1 - and α_2 -chains

1	2	3	4	5	6	7	8	9	10	11	12
Val GTG	His CAT	Leu CTG	Thr ACT	Pro CCT	Glu GAG	Glu GAG		Ser TCT	Ala GCC	Val GTT	Thr ACT
010	CAI	CIU	ACI	tti	UAU	UAU	AAU	ICI	ucc	UII	ACI
13	14	15	16	17	18	19	20	21	22	23	24
Ala GCC	Leu	Trp TGG	Gly		Val GTG	Asn	Val GTG	Asp GAT	Glu	Val GTT	GIY GGT
000	CIU	100	000	AAU	010	AAC	010	UAI	UAA	011	001
25	26	27	28	29	30	31	32	33	34	35	36
Gly	Glu	Ala CCC	Leu	Gly	Arg	Leu	Leu	Val	Val	Tyr	Pro CCT
001	UAU	ULL	CIU	000	AUU	CIU	CIU	010	010	IAC	tti
37	38	39	40	41	42	43	44	45	46	47	48
Trp	Thr	GIn	Arg	Phe	Phe	Glu	Ser	Phe	Gly	Asp	Leu
166	ACC	CAG	AGG	ПС	111	GAG	Itt	111	999	GAI	
49	50	51	52	53	54	55	56	57	58	59	60
Ser	Thr	Pro	Asp	Ala	Val	Met	Gly	Asn	Pro	Lys	Val
ICC	ACI	CCI	GAI	GCI	GII	AIG	GGC	AAC	CCI	AAG	GIG
61	62	63	64	65	66	67	68	69	70	71	72
Lys	Ala	His	Gly	Lys	Lys	Val	Leu	Gly	Ala	Phe	Ser
AAG	GCT	CAT	GGC	AAG	AAA	GIG	CIC	GGT	GCC	111	AGT
73	74	75	76	77	78	79	80	81	82	83	84
Asp	Gly	Leu	Ala	His	Leu	Asp	Asn	Leu		Gly	Thr
GAI	GGC	CIG	GCI	CAC		GAC	AAC	CIC	AAG	GGC	ACC
85	86	87	88	89	90	91	92	93	94	95	96
Phe	Ala	Thr	Leu	Ser	Glu	Leu	His	Cys	Asp	Lys	Leu
111	GUU	ACA		AGI	GAG	CIG	LAL	101	GAC	AAG	
97	98	99	100	101	102	103	104	105	106	107	108
His	Val	Asp	Pro	Glu	Asn	Phe	Arg	Leu	Leu	Gly	Asn
CAC	GTG	GAT	CCT	GAG	AAC	TTC	AGG	CTC	CTG	GGC	AAC
109	110	111	112	113	114	115	116	117	118	119	120
Val	Leu	Val	Cys	Val	Leu	Ala	His	His	Phe	Gly	Lys
GTG	CTG	GTC	TGT	GTG	CTG	GCC	CAT	CAC	TTT	GGC	AAA
121	122	123	124	125	126	127	128	129	130	131	132
Glu	Phe	Thr	Pro	Pro	Val	Gln	Ala	Ala	Tyr	Gln	Lys
GAA	TTC	ACC	CCA	CCA	GTG	CAG	GCT	GCC	TAT	CAG	AAA
133	134	135	136	137	138	139	140	141	142	143	144
Val	Val	Ala	Gly	Val	Ala	Asn	Ala	Leu	Ala	His	Lys
GTG	GTG	GCT	GGT	GTG	GCT	AAT	GCC	CTG	GCC	CAC	AAG
145	146	147									
Tyr	His	STOP									
TAT	CAC	TAA									

Table 1.6.4. The codon sequence of the human β -chain

1.7. Reagents and hardware required for identifying variants by ESI-MS

Solvents.

- 1. Acetonitrile (HPLC grade). Sigma-Aldrich 34888 or equivalent (2.5 L).
- 2. Water (HPLC grade). Sigma-Aldrich 27073-3 or equivalent (2.5 L).
- 3. Concentrated formic acid (Sigma F-4636). Minimum quantity.

Solutions.

Store in glass bottles with glass stoppers. Convenient sizes are 50 mL for every day use and 150 mL for stock solutions. Store at room temperature.

- 1. 1% aqueous formic acid (by volume). 150 mL bottle.
- Solution A for 10-fold diluting aqueous solutions of blood and digests ready for introduction into the mass spectrometer source. Prepare by mixing 10 mL of acetonitrile, 4 mL of water and 4 mL of 1% aqueous formic acid or *pro rata* in a 50 mL bottle. Usage is ~1 mL/sample.
- 3. Wash solution. 50% aqueous acetonitrile containing 1% (by volume) formic acid. For washing syringe between samples. Store in 150 mL and 50 mL bottles.
- 4. It is convenient to keep some water and some acetonitrile in 50 mL bottles for preparing Solution A. The water is also used for 50-fold diluting blood samples and should be stored in a brown bottle.

Reagents. Preparation is more detailed in Section 2.2. Prepare and store in 1.5 mL microcentrifuge tubes.

1. Denaturing solution for adding to 50-fold diluted blood to denature the Hb prior to digestion with trypsin. Prepare by mixing 500 μ L of 1% formic acid with 500 μ L acetonitrile. Usage is 20 μ L/sample. Store at 5 °C. Renew after one month.

- 2. 1 molar aqueous ammonium bicarbonate solution (Sigma A-6141). Usage is 6 μ L/sample. Store at 5 °C.
- 3. 5 mg/mL aqueous TPCK treated trypsin (Sigma T-1426, 50 mg). Usage is 5 μ L/sample. It will remain viable for over 3 months when stored below -20 °C.
- 4. 100 mM aqueous dithiothreitol. (Sigma D-0632, 250 mg). Store at 5 ^oC. It is occasionally used for reducing disulphide bonds in digests or old blood samples.

Miscellaneous.

- 20 μL, 200 μL and 1000 μL pipettes. Gilson or equivalent. Usage is 3 or 4 x 200 μL tips /sample.
- Cation exchange resin beads, 100-200 mesh, hydrogen form. AG 50W-X8, 100g, Cat. No. 143-5441, Bio-Rad Labs. For desalting 500-fold diluted blood.
- 3. 1.5 mL microcentrifuge tubes. 3 or 4 required/sample.
- Block heater. To accommodate 20 or 40 x 1.5 mL microcentrifuge tubes. For incubating digest solutions at 37 °C.
- 5. Syringe pump, Harvard Apparatus, Type 11 or Type 22. For introducing samples into mass spectrometer source generally at 5 μ L/min. Only needed when the mass spectrometer does not have a built-in syringe pump.
- 100 μL gas-tight syringe plus spares. Hamilton type 1710 with removable needle (22s gauge with blunt tip). For introducing samples using a syringe pump.
- 7. 4 x 10 μL syringes plus spares. Hamilton type 701. For preparing digest solutions.
- 8. Mixer.

1.8. Files for installation into MassLynx software

File Name	Application
Hba.ref	Calibration of denatured Hb spectra using the α -chain
Hbb.ref	Calibration of denatured Hb spectra using the β-chain
DigHbA.ref	Calibration of tryptic digest spectra from adult human Hb
DigHbACT.ref	Calibration of α -chymotrypsin digest spectra from adult human Hb
DigHbF.ref	Calibration of tryptic digest spectra from human foetal Hb
MSMSBeta16.ref	Calibration of tandem mass spectra of the β -chain ion with 16 charges

Table 1.8.1. Reference files for mass scale calibration

Table 1.8.2. Sequence of some globin chains

File Name	Chain or Variant Name
HBA_HUMA.emb	Hb α (alpha)-chain
HBB_HUMA.emb	Hb β (beta)-chain
HBD_HUMA.emb	Hb δ (delta)-chain
HBE_HUMA.emb	Hb ε (epsilon)-chain
HBAZ_HUM.emb	Hb ζ (zeta)-chain
HBAgHUMA.pep	Hb ^A y (A-gamma)-chain
HBAgTHUMA.pep	Hb ^A y ^T (A-gamma-T)-chain
HBGgHUMA.pep	Hb ^G γ (G-gamma)-chain
	·
HbLepBal.pep	Hb Lepore-Baltimore. δ-β hybrid chain
HbLepHol.pep	Hb Lepore-Hollandia. δ-β hybrid chain
HbLepWas.pep	Hb Lepore-Boston-Washington. δ-β hybrid chain
HbLincPk.pep	Hb Lincoln Park. β-δ hybrid chain
HbMiyada.pep	Hb Miyada. β-δ hybrid chain
HbNilotic.pep	Hb P-Nilotic. β-δ hybrid chain
HbParchman.pep	Hb Parchman. δ-β-δ hybrid chain
HbPIndia.pep	Hb P-India. β-δ hybrid chain
P-Congo.pep	Hb P-Congo. β-δ hybrid chain
HbKenya.pep	Hb Kenya. ^A γ-β hybrid chain. Also called HPFH-7;Kenya
ConstSpring.pep	Hb Constant Spring. α-chain extension
HbTak.pep	Hb Tak. β-chain extension

1.9. Step 1. Cation exchange-HPLC data and its use in identifying human haemoglobin variants by electrospray ionization mass spectrometry

Although information from cation exchange-HPLC (ce-HPLC) data is not essential when identifying variants by electrospray ionization mass spectrometry (ESI-MS), it can sometimes save time by eliminating unlikely mutations. Most variants are detected by ce-HPLC in Step 1. In Step 2, ESI-MS determines the mass change due to the mutation and assigns the mutation to either the α - or β -chain by analysing the intact haemoglobin (Hb) chains present in denatured blood. The denatured blood is then digested with trypsin (Step 4) to produce ~15 tryptic peptides from each chain, thereby narrowing down the position of the mutation to a particular peptide from one of the chains. It is at this stage that ce-HPLC data can be useful for selecting the appropriate table to use when searching for the variant peptide in the mass spectrum of the digest. In some cases, the mass change leads to a unique mutation governed by a single base change in the nucleotide codon. For example, as shown in Table 1.6.2, a 22 Da mass increase over normal would almost certainly be due to the mutation $Asp \rightarrow His$, in which case identifying the variant peptide is straightforward. However, in other cases there are several possibilities, e.g., a 14 Da mass increase can be due to one of six mutations. In such cases information from the HPLC data can assist in choosing the appropriate table to use when searching for the variant peptide in the spectrum from the digest.

As well as providing the abundance of the variant, ce-HPLC data can be used to indicate the charge change from normal due to the mutation and hence suggest the most likely mutations. If it is assumed that Arg, Lys and His carry a positive charge, Asp and Glu carry a negative charge and all the other amino acid residues are neutral, then the charge change from normal can be roughly related to the elution time in the cation exchange-HPLC data. If the variant elutes significantly sooner than Hb A₀, then the mutation is assumed to cause the Hb to gain one negative charge (J-like) or two charges (I-like). Conversely, if the variant elutes significantly later than Hb A₀, the mutation is assumed to cause the Hb to gain one positive charge (D-like) or two charges (C-like). If the variant elutes very close to or is coincident with Hb A_0 , then the mutation is assumed to be between amino acids carrying a similar charge

or carrying no charge, i.e. is silent or nearly so. The Bio-Rad ce-HPLC traces of some variants together with the charge changes predicted by these rules are shown in Figures 1.9.1 and 1.9.2.

Of course, the above rules are over simplified and there are some anomalies. For example, D-Iran (β 22Glu \rightarrow Gln), Figure 1.9.1c, with a predicted increase of one positive charge elutes close to Hb E (β 26Glu \rightarrow Lys), Figure 1.9.1d, with a predicted increase of two positive charges. Most mutations with a predicted charge change of +2 elute much later than Hb E, closer to Hb C (β 6Glu \rightarrow Lys), Figure 1.9.2d or $(\beta 121 \text{Glu} \rightarrow \text{Lys}).$ Despite O-Arab such anomalies, the above rules appear to work sufficiently well in distinguishing J-/I-like, D-/C-like and silent variants. The following examples illustrate how the rules can be applied in practice.

Suppose a D-like variant was detected by HPLC, and ESI-MS of the intact chains (Step 2) showed that the mutation was associated with the β -chain and increased the mass by 14 Da over normal. Table 1.6.2 shows there are six mutations that can give 14 Da mass increase by a single base change in the nucleotide codon, namely: $Asn \rightarrow Lys$, $Asp \rightarrow Glu$, $Gly \rightarrow Ala$, Ser \rightarrow Thr, Val \rightarrow Ile and Val \rightarrow Leu. Of these mutations, all except $Asn \rightarrow Lys$ can be discounted, because they would be silent or almost silent by HPLC. Thus, the most likely mutation is Asn \rightarrow Lys and Table 4.5.6, listing the 'new' peptides would be referred to first when searching for the variant peptide in the digest spectrum.

If a D-like peptide had given 1 Da mass decrease from normal in the β -chain, then different sets of tables would be used (Table 4.4.1 and possibly Table 4.4.2).

If a variant that gave 14 Da mass increase above normal had been essentially silent by HPLC, then the appropriate 'Auto digest simulation' table (Section 4.5) would be used. In this case all the mutations except Asn \rightarrow Lys would be considered.

Summary

Relating ce-HPLC data to amino acid and charge change.

Assume:

- Arg, Lys and His carry one positive charge
- Asp and Glu carry one negative charge
- All the other amino acid residues carry no charge, i.e. are neutral.

Then, on the whole:

- When the mutation causes a net increase in negative charge, the variant elutes 'well before' Hb A₀ (travels significantly faster than Hb A₀) on ce-HPLC. Examples are: Gly→Asp, Ala→Glu, Ala→Asp, Gln→Glu, Lys→Glu, His→Gln, and Arg or Lys to a neutral residue.
- When the mutation causes no change in charge, the variant elutes 'close to' Hb A₀ on ce-HPLC.

Examples are: $Arg \leftrightarrow Lys$, $Asp \leftrightarrow Glu$ and any mutation between neutral residues, e.g. $Ser \rightarrow Pro, Val \rightarrow Met$.

• When the mutation causes a net increase in positive charge, the variant elutes 'well after' Hb A₀ (travels significantly slower than Hb A₀) on ce-HPLC.

Examples are: Asp \rightarrow Gly Glu \rightarrow Ala Glu \rightarrow Gln Asp \rightarrow Asn Glu \rightarrow Val Gln \rightarrow Arg Asn \rightarrow Lys Gln \rightarrow Lys Asp \rightarrow His Glu \rightarrow Lys.

Figure 1.9.1. Cation exchange-HPLC traces showing how the elution time roughly correlates with charge change. Hb E moves anomalously fast but its elution time nevertheless indicates a significant positive charge change.

References for Preface and Section 1

⁽¹⁾ T.R. Covey, R.F. Bonner, B.I. Shushan and J. Henion, The determination of protein, oligonucleotide and peptide molecular weights by ion-spray mass spectrometry, Rapid Commun.Mass Spectrom. **2**, 249-256 (1988).

⁽²⁾ B.N. Green, R.W.A. Oliver, A.M. Falick, C.H.L. Shackleton, E. Roitman and H.E. Witkowska, Electrospray MS, LSIMS and MS/MS for the rapid detection and characterization of variant hemoglobins, in A.L. Burlingame and J.A. McCloskey (eds), Biological Mass Spectrometry, Elsevier, Amsterdam, 1990, pp129-146.

⁽³⁾ H.E. Witkowska, B.H. Lubin, Y. Beuzard, S. Baruchel, *et al.*, Sickle Cell Disease in a Patient with Sickle Cell Trait and Compound Heterozygosity for Hemoglobin S and Hemoglobin Quebec-Chori, N.Engl.J.Med., **325**, 1150-1154 (1991).

⁽⁴⁾ A.G. Ferrige, M.J .Seddon, B.N. Green, S.A. Jarvis and J. Skilling, Disentangling electrospray spectra with maximum entropy, Rapid Commun. Mass Spectrom. **6**, 707-711 (1992).

⁽⁵⁾ B.J. Wild, B.N. Green, E.K. Cooper, M.R.A. Lalloz, S. Erten, A.D. Stephens and D.M. Layton, Rapid identification of hemoglobin variants by electrospray ionization mass spectrometry, Blood Cells, Molecules and Diseases, **27**, 691-704 (2001).

⁽⁶⁾ J.R. de Laeter, J.K. Bohlke, P. De Bievre, H. Hidaka, H.S. Peiser, K.J.R. Rosman and P.D.P. Taylor, Atomic weights of the elements: Review 2000. Pure Appl. Chem. **75**, 683-800 (2003).

⁽⁷⁾ D.J. Weatherall and J.B. Clegg. Inherited haemoglobin disorders: an increasing global health problem. Bulletin of the World Health Organisation. **79**, 704-712 (2001).

⁽⁸⁾ A.S Davison, B.N Green, and N.B. Roberts, Fetal haemoglobin: assessment of glycation and acetylation status by electrospray ionization mass spectrometry, Clin. Chem. Lab. Med., **46**, 1230-38 (2008).

⁽⁹⁾ M. Bowers, M.F. McMullin, B.N. Green and F. Jones, Hydrops Fetalis secondary to homozygous alpha thalassemia in a very low incidence area, CME Bulletin Haematology, **2**, 54-56 (1999).

SECTION 2

2.0. Step 2: The analysis of the globin chains in human haemoglobin by electrospray ionization	mass
spectrometry (ESI-MS)	
2.1. Information obtained from the spectrum of the globin chains.	
2.2. Sample preparation.	
2.2.1. Preparing stock solutions from whole blood.	
2.2.2. Preparing stock solutions from Guthrie cards	
2.2.3. Preparing working solutions	
2.2.4. Preparing desalted working solutions	
2.2.5. Improving the quality of the data from old blood samples by reduction with dithiothrei	tol29
2.2.6. Overall summary of the procedures for preparing desalted working solutions from who blood samples.	le 29
2.3. Analysis by ESI-MS.	
2.3.1. Sample introduction	
2.3.2. Scan and data acquisition parameters.	30
2.3.3. Critical instrumental parameters	30
2.3.4. Mass scale calibration	30
2.4. Deconvoluting the raw data	32
2.4.1. Deconvoluting the raw data using MaxEnt 1	33
2.4.2. Two special cases requiring atypical processing by MaxEnt.	33
2.4.3. Correcting the mass scale in MaxEnt processed spectra.	34
2.4.4. Assigning variants that give $\leq \pm 6$ Da mass change from normal to either the α - or the β with the aid of ce-HPLC data ^(†)	-chain 34
2.4.5. Determination of minor components from the spectrum of the globin chains	
2.4.5.1. δ-chain (sequence mass 15,924.32 Da)	
2.4.5.2. Glycated Hb chains and Hb A1c	39
2.4.5.3. Carbonic anhydrase (CA1, sequence mass 28,781.08 Da)	39
2.4.6. Some variants that can be identified from the spectra of their globin chains	44
2.4.7. The average molecular masses of the normal human haemoglobin chains and some of t derivatives	heir 45
2.5 References	

2.0. Step 2: The analysis of the globin chains in human haemoglobin by electrospray ionization mass spectrometry (ESI-MS)

2.1. Information obtained from the spectrum of the globin chains.

In contrast to the routine methods used in haematology laboratories, cation e.g. exchange-HPLC (ce-HPLC), which analyse the haemoglobin (Hb) in blood as non-covalent assemblies of globin chains, ESI-MS analyses the Hb in denaturing solution in order to observe the individual globin chains and their derivatives. Blood is diluted 500-fold in 50% aqueous acetonitrile containing 0.2% formic acid. After desalting, this solution is analysed by ESI-MS to give a spectrum in two or three minutes which, after deconvolution by the maximum entropy-based software (MaxEnt), provides the following information.

Figure 2.1.1 shows the electrospray mass spectrum of diluted whole blood over the mass range m/z 600-1400 and shows the two distinct multiply protonated molecule series for the α - and β -chains. Also seen is the haem (m/z 616.2) that is released from the Hb complex under the denaturing solvent conditions.

To reliably achieve the mass measurement precision required for this work, the acquisition range is limited to m/z 930-1210 with a minimum of 32 points per m/z unit (Figure 2.1.2a). From the acquired data, the mass-calibrated m/z range deconvoluted with MaxEnt is restricted further to m/z 980-1180 (Figure 2.1.2b), to give the Hb spectrum on a true mass scale (Figure 2.1.2c).

1. The molecular weights (masses) of the major chains determined with a precision of better than ± 0.05 Da (± 3.2 ppm) standard deviation, provided that one of the chains (usually the α -chain) is used to internally calibrate the mass scale. The masses of the major chains are usually determined to within 0.2 Da. This accuracy allows the mass change due to the mutation to be derived, and, when a variant is due to a single amino acid change, a limited number of single amino acid mutations can be proposed. This mass change is an important characteristic of the variant that is used in all subsequent identification work. Variant chains that differ in mass by as little as ± 1 Da from normal can be detected in heterozygotes, provided their abundance is >10% of the normal chain^(1,2).

2. Assignment of a variant to either the α - or the β -chain. With variants in heterozygotes that give $<\pm 6$ Da mass change from normal, ce-HPLC data are also required.

3. The proportion of the variant chain relative to the normal chain in heterozygotes.

4. The proportion of the δ -chain (equivalent to Hb A₂) relative to total non- α -chains.

5. The levels of glycated α - and β -chains. The Hb A_{1c} level can be derived from the level of glycation on either the α - or β -chain by calibration.

6. The proportions of ${}^{G}\gamma$, ${}^{A}\gamma$ and ${}^{A}\gamma^{T}$ in Hb F (detection limit ~0.5%). The ratio ${}^{G}\gamma/(\text{total }\gamma)$ can be obtained directly from the spectrum.

7. Some variants can be identified from their characteristic spectra or masses, e.g. Hbs St Josef, J-Biskra, Wayne, South Florida, Marseille, P-Nilotic, Lepore-Baltimore, Kenya and Tak (see Section 2.4.6).

8. Detection of variants which are silent by ce-HPLC. Most variants that are silent by ce-HPLC are readily detected by ESI-MS.

9. Detection of carbonic anhydrase 1 (CA1, 28,781.08 Da).

2.2. Sample preparation. 2.2.1. Preparing stock solutions from whole blood.

Dilute 10 μ L of blood with 490 μ L of HPLC grade water to make a stock solution of blood diluted 50-fold. This solution should be stored at -20°C and should remain viable for several months. It is also used for producing enzymatic digests with trypsin.

2.2.2. Preparing stock solutions from Guthrie cards.

Place four 3 mm diameter spots punched from a Guthrie card in a 1.5 mL microcentrifuge tube and occasionally agitate them with 300 μ L of water until most of the haemoglobin has dissolved. Check that the concentration of haemoglobin in the solution is roughly the same as that prepared above (2.2.1.) from a whole blood sample by comparing the colour levels by eye. If necessary, add water or more spots to make the colour intensities similar. If a spot punch is not available, cut out a ~3 x 10 mm strip with scissors. This is roughly equivalent to four 3mm diameter spots. One 3 mm diameter spot contains approximately 2 μ L of blood.

2.2.3. Preparing working solutions.

A working solution suitable for ESI-MS analysis may be made by simply diluting 20 μ L of the stock solution 10-fold with 180 μ L 0.8:1.0 water:acetonitrile of solution containing 0.22% formic acid (solution A) to give an overall dilution from blood of 500. Solution A may be prepared by mixing 5 mL acetonitrile, 2 mL water and 2 mL 1% aqueous formic acid or pro rata. The concentration of each major chain in the working solution is ~9 $pM/\mu L$ (9 μM), based on 15 g of Hb per 100 mL of blood. Figure 2.1.3a shows a typical MaxEnt spectrum from a solution prepared in this way from the blood of a heterozygote for the variant Hb Fontainebleau, $\alpha 21$ Ala \rightarrow Pro, in which the sequence mass of the variant α chain is 26.04 Da higher than normal.

2.2.4. Preparing desalted working solutions.

Often with heterozygotes, alkali metal adducts of the normal chains (principally Na and K) may interfere with the detection and measurement of variant chains that occur up to ~70 Da higher in mass than the normal chains. These adducts tend to be more serious with α chain variants, where the variant chain abundance may be 25% or less of the total α - chain abundance. Furthermore, alkali metal adducts interfere with reliable detection and measurement of the δ -chain (Hb A₂). Other cases occur when β -chain variants are at low levels.

Therefore, it is strongly recommended that all diluted blood samples are desalted before analysis. A simple and quick desalting procedure using cation exchange resin beads is as follows. First, wash some beads by placing ~500 mg of cation exchange resin beads (AG 50W-X8, hydrogen form, 100-200 mesh, Cat. No. 143-5441, Bio-Rad Labs) in a fresh 1.5 mL microcentrifuge tube. Add ~1 mL of HPLC grade water and manually shake the mixture for ~30 sec. After allowing the beads to settle (~30 sec), remove as much of the water as can be easily removed with a pipette. Repeat the washing procedure at least once. Store the washed beads at room temperature.

Then, manually agitate 200 µL of the 500-fold diluted working solution as prepared in Section 2.2.3. above with $\sim 20 \text{ mg}$ of the washed ion exchange beads for 15-30 seconds. After allowing the beads to settle (~20 seconds), immediately draw 50-100 µL of the supernatant liquid into the syringe that is to be used to introduce the sample into the ESI source. Be careful to avoid drawing beads into the syringe tip. The desalting procedure may introduce non-covalently bound adducts due to impurities from the beads that are 98 and 202 Da higher than the masses of the Hb chains. The 98 Da adducts are probably due to the presence of H₂SO₄ from the beads. Washing the beads prior to use generally reduces such adducts to negligible levels, provided the working solution is not left too long in contact with the beads. Washed beads that have been left standing for more than a few hours, e.g. overnight, should be washed once again before use.

Figure 2.1.3 illustrates the effect of desalting a sample containing the α -chain variant Hb Fontainebleau. Before desalting (Figure 2.1.3a), Na and K adducts associated with the β -chain can be seen at ~10% relative intensity. Since each adduct carries a positive charge, their masses are calculated to occur 21.98 Da (Na-H) and 38.09 Da (K-H) higher than the masses of the α - and β -chains. A third adduct (Na+K-2H) is predicted to occur 60.07 Da higher than the β -chain at 15,927.31 Da, close

to the mass of δ -chain (15,924.32 Da). This erroneously raises the level and mass of the δ chain to 4.6% and 15,925.35 Da respectively, since Hb components that occur <6 Da apart are not resolved by ESI-MS/MaxEnt. After desalting, (Figure 2.1.3b), the δ -chain level decreased to 3.0% and its mass to 15.924.06 Da.

The sodium adduct associated with the normal α -chain is predicted to occur at 15,148.36 Da. However, unresolved from it is the Fontainebleau variant (sequence mass 15,152.42 Da) and erroneously raises the level of the latter.

Moreover, it lowers the apparent mass of the variant to be 24.43 Da higher than the normal α -chain instead of the predicted 26.04 Da. After desalting, this mass difference increased to 25.65 Da, which, although still slightly lower than predicted, nevertheless rounds to the nominal mass difference of 26 Da, allowing the correct mass difference to be used in predicting potential amino acid changes from the genetic code tables. After desalting, the level of the variant decreased from 21.2 to 15.6%.

2.2.5. Improving the quality of the data from old blood samples by reduction with dithiothreitol.

Adducts often occur in old blood samples that originate from the glutathione present in blood and are covalently bound to β 93Cys. They occur 119.14 Da (cysteinylation), 176.20 Da (Cys-Gly addition) and 305.31 Da (glutathionylation) Da higher than the mass(es) of the β -chain(s). For the normal β -chain, their masses are 15,986.38 Da, 16043.44 Da and 16172.55 Da respectively. They may be reduced to the underivatised β -chain(s) by treating an aliquot of the stock solution with dithiothreitol (DTT) as follows. Do not use mercaptoethanol because it produces disulphide bound adducts with accessible cysteines.

Place 20 µL of the stock blood solution (50fold diluted blood) in a fresh microcentrifuge tube and add 0.5 µL of a 1 M/L solution of ammonium bicarbonate and 2 µL of a 100 mM/L solution of DTT. Mix, pulse centrifuge and incubate at 37 °C for ~15 minutes. Then add 180 µL of solution A. The resulting solution may be desalted using the procedure described above (2.2.4) and introduced directly into the ESI source of the mass spectrometer.

This procedure can also be useful in cases where the mutation produces a 'new' cysteine with consequently high levels of disulphide bound adducts, e.g. Hb Leeds (β 56Glv \rightarrow Cvs). Hb Ta-Li (β 83Gly \rightarrow Cys) forms disulphide linked dimers on standing, which can be reduced to the monomers using DTT in this way.

2.2.6. Overall summary of the procedures for preparing desalted working solutions from whole blood samples.

Prepare a stock solution in a 1.5 mL microcentrifuge tube by diluting 10 µL of whole blood with 490 µL of water (50-fold dilution).

Transfer 20 µL of the stock solution to a fresh 1.5 mL microcentrifuge tube and add 180 µL of solution A (overall 500-fold dilution).

Add ~20 mg of previously washed cation exchange beads. Manually shake the mixture for 15-30 seconds. Allow the beads to settle (~20 seconds) and draw 50-100 μ L of the desalted blood solution into the syringe that is to be used for introducing the sample into the ESI source of the mass spectrometer. Be careful to avoid drawing beads into the syringe tip.

Solution A may be prepared by mixing 5 mL of acetonitrile, 2 mL of HPLC grade water and 2 mL of aqueous 1% formic acid or pro rata.

2.3. Analysis by ESI-MS. 2.3.1. Sample introduction.

Introduce the working solution of the sample into the ESI source at 5 µL/min. One method is to introduce the sample solution using a syringe pump (e.g. Type 11 or 22, Harvard Apparatus Inc, South Natick, MA) and a gastight syringe (e.g. Type 1710 (100 µL) with gauge removable blunt-tip needle, 22s Hamilton Inc). If available, a syringe pump mounted on the mass spectrometer should be used. Two rinses of the syringe with wash solution between samples are generally sufficient to prevent carry-over. A suitable wash solution is composed of 50% aqueous acetonitrile containing 1% formic acid.

2.3.2. Scan and data acquisition parameters.

All the results in this book were produced by a triple quadrupole instrument, which was set to give a peak width at half height of 0.7 m/z unit on the m/z 1,081.5 ion from the haemoglobin α -chain (M+14H)¹⁴⁺, where M is the molecular weight of the α -chain (15,126.38 Da).

Acquire data in the MCA mode for 3 minutes, whilst scanning from m/z 930-1210 at 8 seconds/scan. The number of channels per m/z unit should be no less than 32.

2.3.3. Critical instrumental parameters

The following four items describe the critical requirements for acquiring and processing globin chain data from blood samples:

- 1. Data must be acquired with a minimum of 32 data points per m/z unit.
- 2. Acquire the data over the m/z range 930-1210. Acquiring over a wider m/z range is of no advantage, and doing so may compromise the calibration or The deconvolution procedures. recommended m/z range will accommodate most of the variants likely to be encountered in practice including the Constant Springs, the γ -chains and various derivatives of the major chains, e.g. glycated species, haem adducts etc. However, the ratio of the intensity of the α chain to that of the β -chain is not quantitatively correct.
- 3. Before deconvoluting the raw data with MaxEnt, the m/z scale of the raw data must be internally calibrated, i.e. calibrated on itself, using the multiply protonated normal α -chain peaks. In cases where the normal α -chain is compromised, e.g. by a partly resolved variant, the β -chain should be used.
- 4. Deconvolution of the baseline subtracted raw data by MaxEnt should normally be undertaken over an input m/z range 980-1180, with an output mass range of 14800-16800 Da and an output resolution of 0.2 Da per/channel (per data point). Note that MaxEnt only processes that part of the m/zrange on display.

The use of instrumentation that isotopically resolves the components is believed to offer no

advantage. This is because the lowest isotopic species (the monoisotopic species) from a globin chain has a predicted abundance that is only ~0.1% of the most abundant species which is too small be used. Furthermore, each component consists of nearly 20 isotopic species approximately 1 Da apart and above 10% of the most abundant species. Therefore, two globin chains differing in mass by 1 Da will produce two overlapping patterns each of roughly 20 isotopic species and displaced by 1 Da, which will still require some form of deconvolution in order to establish their masses and relative abundance. It appears that resolving the isotopic species does not improve the ability to resolve closely spaced variants.

2.3.4. Mass scale calibration.

It is extremely rare to encounter a blood sample that does not produce multiply charged normal α -chain peaks as major components. Consequently, these peaks should be used to calibrate the m/z scale of each data file on itself, i.e. internally, with considerable benefit to the accuracy of mass determination. The whole calibration procedure may be undertaken automatically in a few seconds from the **raw spectrum** as follows. Note that the calibration procedure uses the acquired m/zrange irrespective of the range shown on the display.

From the **raw spectrum**, select **Tools**, then select **Make calibration**, and in the

Make new calibration window select an appropriate **Reference file**, Hba.ref for the α -chain or Hbb.ref for the β -chain (Figure 2.2.1).

ake new calibration		
Reference material		OK
<u>R</u> eference file		Cancel
Hba.ref	-	
Air references		
Mass measure	Auto <u>P</u> eak	Detect

Figure 2.2.1. Selection of the mass calibration file for the α -chain

Select the **Mass Measure** window (Figure 2.2.2).

Select **Background subtract.** Set Polynomial order to 25. Set Below curve (%) to 5.

Select **Smooth.** Set Peak width (Da) to 0.6. Set Number of smooths to 2. Select **Savitsky Golay.** Set Min peak width at half height (channels) to 4.

Select **Centroid top (%).** Set to 50. Press **OK** from the **Mass Measure** window.

Press **OK** from the **Make new calibration** window.

Background subtrac	a.	OK
Polynomial order	25	Cancel
Below curve (%)	5.00	
Smooth		
Peak <u>w</u> idth (Da)	0.60	
Number of smooths	2	
Me <u>a</u> n		
Savitzky <u>G</u> olay		
Min peak width at half height (channels)	4	1
⊂ Iop		
Centroid top (%)	50.00	
2 N. 16		

Figure 2.2.2. Typical parameters for automatically calibrating the mass scale of the globin chain m/z spectra using the α -chain.

This should calibrate the spectrum in a few seconds and the **Calibrate** report (Figure

2.2.3) should appear to show how well the experimental data fit the reference data.

From the **Calibrate** report, select **Edit** to show the **Calibration Parameters** (Figure 2.2.4).

Typically, these should be as follows:

Select **Perform auto peak matching**. Set Peak window to 0.4. Set Initial error to 0.5. Set Intensity threshold to 0.2. Set Polynomial order to 2. Turn off Intensity weighting.

On some instruments, it may be necessary to increase Initial error. This depends upon how well the mass scale of the mass spectrometer was adjusted before calibrating the mass scale.

Press **OK** to accept the **Calibration Parameters**.

Press **OK** (from the **Calibrate** report) to accept the calibration provided it is satisfactory as indicated by the deviations from the calibration line headed **Residuals** in the **Calibrate** window.

Typically, the deviations from the line should be $<\pm 0.01$ amu (*sic*, actually *m/z*). The data file is now internally calibrated and will remain with this calibration until calibrated again. The *m/z* spectrum may be recalibrated at any time, and new MaxEnt processed data produced from the recalibrated raw data file. Any earlier MaxEnt processed data will not be affected by recalibrating the raw data.

Figure 2.2.3. Typical calibration report from a 500-fold diluted and desalted blood sample using the α -chain for internal calibration.

reak Match	-	OK.
Perform auto peak matching	ing	015
Peak <u>w</u> indow (Da) +/-	0.40	Cancel
Initial <u>e</u> rror (Da)	0.50	
Intensity threshold	0.20	
	-	
Latensity weighting		
□ Intensity weighting Display		

Figure 2.2.4. The parameters for automatically calibrating the mass scale of globin chain m/z spectra.

Once the above procedure has been undertaken, subsequent spectra may he automatically calibrated from the raw spectrum by displaying the spectrum, selecting **Tools**, Make New Calibration, and pressing OK in the Make New Calibration window. Finally, press OK in the Calibrate window to accept the calibration. As stated above, the calibration procedure always calibrates the whole

spectrum irrespective of the m/z range shown on the display.

In some cases of heterozygotes where an α chain variant is incompletely resolved from the normal α -chain, it is better to calibrate using the β -chain (Hbb.ref). These cases occur when the mass difference between normal and variant α -chains (Δ M) lies between 9 and ~15 Da. Examples include Le Lamentin (Δ M = -9 Da) and G-Philadelphia (Δ M = +14 Da). This does not apply to cases where the normal and variant α -chains are completely unresolved, i.e. are not apparently present in the m/zspectrum. In these cases, the only evidence for suspecting the presence of a variant would be from the ce-HPLC trace. The mass difference would probably lie between 1 and 4 Da.

2.4. Deconvoluting the raw data

The maximum entropy (MaxEnt) software is by far the best method available for condensing the original multiply charged m/z data so that each component in the original mixture is presented as a single peak on a true mass scale. MaxEnt automatically processes the multiply charged data and improves the resolution, so that two Hb chains separated by only 6 Da can just be resolved in favourable cases. MaxEnt is also quantitative in so far as the area under a peak in the MaxEnt profile spectrum is a measure of the sum of the intensities of the multiply charged species from which that peak was derived.

2.4.1. Deconvoluting the raw data using MaxEnt 1

To deconvolute a spectrum by MaxEnt, first **Background Subtract** the raw data (from **Process, Subtract**) with polynomial order set to 25, Below curve (%) set to 5 and Tolerance set to 0.01% (Figure 2.2.5). Then display *m/z* 980-1180 (from **Display, Range**) and display 2 decimal places (from **Display, Peak Annotation**). MaxEnt processes only that part of the spectrum shown on the display. <u>Always</u> background subtract the raw data before processing by MaxEnt and <u>never</u> smooth it.

Figure 2.2.5. Typical parameters for background subtracting mass spectra

From **Process**, select **MaxEnt 1**. For routine processing of Hb data, in the **MaxEnt** window (Figure 2.2.6), set Output Mass Range to 14,800:16,800 Da and Output Resolution to 0.2 Da/channel.

Select **Simulated Isotope Pattern** and initially set Spectrometer Blur Width to 0.4 Da (*sic*, actually m/z).

Set the Minimum intensity ratios, Left and Right, to 40% and select **Iterate to convergence**. Press **OK** to start MaxEnt processing and allow it to converge. This should take about 15 seconds on a modern computer (2014). Press **OK**.

Select the MaxEnt profile spectrum and Smooth it using Peak width (Da) set to 4, number of smooths set to 2. Select Savitsky Golay. Press OK. Then, Centre the smoothed profile spectrum with Create centred spectrum turned off, in order to accurately determine the masses of the components. Set Minimum peak width at half height (channels) to 1 and Centroid top (%) to 90. Press OK.

Figure 2.2.6. Typical parameters for MaxEnt processing the background-subtracted raw m/z data from 500-fold diluted blood samples. The Spectrometer Blur Width may need adjusting (0.3-0.5) to make the α -chain mass within ± 0.1 Da of its sequence mass.

If necessary, adjust the Spectrometer Blur Width and reprocess the original background subtracted data by **MaxEnt 1** in order to make the mass of the α -chain fall within ± 0.10 Da of its sequence mass (15,126.38 Da). Increasing the Spectrometer Blur Width increases the mass and *vice versa*.

Finally, produce a bar spectrum in which the intensity of each component is a measure of the sum of the intensities of that component in the multiply charged spectrum by repeating **Centre** with the Create centred spectrum box turned on, select **Areas** and **Add**. Display mass to 2 decimal places. Print the profile and bar spectra on a single page as shown in Figure 2.5. Select the bar spectrum (Figure 2.5b), and produce a mass/intensity list from **Display**, **List Spectrum**. Print the mass/intensity list with Data Threshold set to ~0.5% Full Scale (from **Display**, **View**) as shown in Figure 2.6.

2.4.2. Two special cases requiring atypical processing by MaxEnt.

These are: observation of (a) the Constant Springs and (b) Carbonic anhydrase 1 (CA1, sequence mass 28,781.08 Da) and dimers. Parameters that are different to those given for routine processing are as follows: **The Constant Springs.** Display the m/z range 955-1210. In the **MaxEnt** window (Figure 2.2.6), set Output Mass Range to 14800:19000 Da and Output Resolution to 0.2 Da/channel.

Carbonic anhydrase (CA1) and dimers. In the **MaxEnt** window (Figure 2.2.6), set Output Mass Range to 14800:32500 Da and Output Resolution to 0.5 Da/channel.

2.4.3. Correcting the mass scale in MaxEnt processed spectra.

Despite using the α -chain for calibration, the measured masses may require correction in order to obtain full accuracy and precision. Although repeated reprocessing of a given data set by MaxEnt can be undertaken to make the α -chain mass equal its sequence mass by adjusting the peak width parameter, a series of measurements made during routine variant analysis indicated a simpler expedient that was quicker to apply in practice. It was found that the mass scale of the MaxEnt output spectrum could be simply adjusted on a linear basis to make the α -chain mass equal its sequence mass, with a worthwhile improvement in the accuracy and precision of the β -chain mass. For example, if the mass of the α -chain is high by 0.05 Da, then 0.05 Da is subtracted from all the components of interest in the MaxEnt output spectrum. The sequence masses of the normal α - and β -chains are 15,126.38 and 15,867.24 Da respectively. The example shown in Figure 2.5 shows how a correction of -0.03 Da applied to the normal β -chain reduced the error from 0.04 to 0.01 Da.

Using this method of correcting the mass and provided 32 channels per m/z unit are used to acquire the data, the precision in measuring the mass of the β -chain should be better than ± 0.05 Da SD. This precision is particularly useful for detecting variants in heterozygotes, in which the mass of the variant differs from normal by <6 Da. An ability to determine the mass of the β -chain to a precision of better than ± 0.05 Da means that ± 1 Da α - or β -chain variants in heterozygotes can be detected provided they are present at >10% of total α - or β -chains⁽¹⁾. Moreover, such variants can be assigned to either the α - or β -chain by combining the apparent change in the mass of the β -chain with the polarity change of the variant from normal inferred from ce-HPLC data. See Section 2.4.4.

Figure 2.6 shows how the proportion of the variant was calculated from the % BPI (% Base Peak Intensity) values as 100 x $\alpha^{X}/(\alpha^{X} + \alpha^{A}) =$ 18.6%. This can be related to ce-HPLC data by calculating 100 x X/(X + A₀), where X and A₀ are the percentages of the variant and A₀ respectively. In this example, 100 x X/(X + A₀) was 19.5%.

2.4.4. Assigning variants that give $<\pm 6$ Da mass change from normal to either the α - or the β -chain with the aid of ce-HPLC data^(†)

2.4.4.1. Introduction.

A basic limitation of electrospray ionization mass spectrometry (ESI-MS) when used to analyse the globin chains in human haemoglobin (Hb) is that chains differing by $<\pm 6$ Da from one another are not observed as separate entities. There are about 77 α - and 93 β -chain variants that can occur by single base changes in the nucleotide codon and differ from normal by $<\pm 6$ Da. When these variants occur in heterozygotes, the mass determined by ESI-MS is the abundance weighted mean of the variant and normal chain masses. Several common β-chain variants, e.g. C, D-Punjab, E and O-Arab, are in this category, since their masses differ from normal by -1 Da. In heterozygotes containing 50 or 25% of these variants, the apparent mass of the β -chain determined by ESI-MS will be lower than normal by 0.50 or 0.25 Da, respectively.

The procedure for establishing the masses of the intact chains by ESI-MS uses one of the major chains for internal calibration of the mass scale, usually the α -chain. In normal Hb, the mass of the β -chain determined in this way is generally within ± 0.05 Da SD (± 3.2 ppm) of its sequence mass. This degree of accuracy can only be achieved by using one of the major chains for internal calibration. Using the α chain for calibration, if the measured mass of the β -chain differs from normal by more than say ± 0.10 Da, i.e. ± 2 SD, the presence of a variant that differs from normal by $<\pm 6$ Da is indicated. However, since the mass scale has been internally calibrated using the α -chain, the α -chain mass is forced to be correct and the β-chain shows the mass change from normal irrespective of whether the variant is in the α or the β -chain.

2.4.4.2. Procedure

In order to establish which chain is associated with the variant, the mass change of the variant from normal determined by ESI-MS is combined with the charge change of the variant from normal implied by ce-HPLC data. Variants that travel faster than Hb A₀, i.e. elute well before Hb A₀, are deemed to gain negative charge, e.g. J (-1), I (-2). Variants that travel significantly slower than Hb A₀, i.e. at Hb A₂ and after, are deemed to gain positive charge, e.g. D, S (+1), C, E (+2). Variants that elute very close to Hb A₀, often as shoulders on the side of Hb A₀, are assumed to involve no charge change. Although these rules give a perhaps oversimplified view of charge, they are, nevertheless, useful, with very few exceptions.

Mutations that give zero mass change cannot be detected by ESI-MS analysis of the globin chains, and rely on being detected by ce-HPLC in the first instance. They are readily identified directly from tryptic digests, because they either produce two 'new' peptides (Gln \rightarrow Lys) or combine two adjacent peptides into one larger peptide (Lys \rightarrow Gln).

Table 2.1 shows the charge and mass changes produced by all the mutations that give $<\pm 6$ Da mass-change together with some examples. The amino acid residues Asn, Gln, Ile, Leu, Met, Pro and Thr are assumed to have zero charge, Asp and Glu one negative charge and Lys one positive charge. Hence, a mutation from Glu to Lys (C- or E-like) involves a charge change from -1 to +1, i.e. a net increase of two positive charges. A mutation of Lys to Gln involves a change of +1 to 0, i.e. a net increase of one negative charge.

Table 2.2 shows the four ways in which $<\pm 6$ Da variants in heterozygotes can be assigned to either the α - or the β -chain by combining the apparent mass change of the β -chain with the charge change implied by the ce-HPLC data. For these rules to apply, the mass scale <u>must</u> be calibrated using the α -chain (Section 2.3.4.). If the β -chain shows a negative (or positive) mass change from normal and the ce-HPLC data indicate that the variant causes respectively an increase in positive (or negative) charge change, then the variant is in the β -chain. However, if the ce-HPLC data indicate a negative (or positive) charge change, still with respectively a negative (or positive) apparent mass change of the β -chain, then the variant is in the α -chain⁽¹⁾. For mutations that give ± 1 Da mass change from normal, the proportion of the variant can be estimated approximately as (100x measured mass change from normal)%.

LES+ No																																
TIC Scan																																
)0) %BPI %																																
o (25,5.0 Inten																																
R40); St Mass																																
:0,L40,I																																
1180,0.3 %TIC																																
30,980: n %BPI																																
(Sp,0.3 ss Inte																																
98,It37] Io Ma																																
[Ev-418					0 2 07	0.0%0																										
0); M1 ВРІ %ТІС					. X	α~)=1													= 3.1%													
3, 2x4.0 Inten %					. A	/(a -+ -)/													β ^A + δ)	ר - א												
Sm (SC Mass					X 00	υυ X α													00 x 8/(
00, Ar); No						-													-	4												
n,1,90.	.39 .31 .40	.01 C ^A	42	.95 .30	.40 X	.04 Q	20	.57	32	.38	.75	5.5	34	.34 35	20	.24 β ^A	.43 26	5 4 -	.64 719 S	.35 C	.25	44.	.25	.20	37	.28	.63	.23	19	.61		.19
Cn (Ce %BPI %	1.04 0 0.84 0 1.08 0	59.10 22 1.15 0	1.13	2.54 0.82 0	1.08	13.54 5 0.85 0	0.54 0	1.52 0	0.85 0	1.03 0	7.39 2	0.56 0	0.92 0	0.92	0.53 0	00.00 37	3.83 2.83 2.83	1.18	1.73 0 3.20 1	0.93 0	0.67 0	3.8/	0.68 0	0.53 0	3.69 0.80 0	0.76 0	1.69 0	0.61 0	0.51 0	9.68	0.82	0.51 0
(3.001) futen	4.15e7 3.38e7 4.32e7	2.37e9 4.60e7	4.53e7	1.02e8 3.28e7	4.35e7	5.43e8 3.40e7	2.15e7	6.11e7	3.42e7	4.14e7	2.96e8	2.23e7	3.70e7	3.68e7 3.73o7	3.1367 2.14e7	4.01e9 1	1.54e8 1 36e8	4.72e7	6.93e7 1.28e8	3.74e7	2.70e7	1.55e8 3.68e7	2.73e7	2.14e7	1.48e8 3 56e7	3.05e7	6.76e7	2.44e7 1 62e7	2.03e7	3.88e8	3.29e7	2.05e7
1 Mass	4817.25 4891.75 918.76	5126.41 135.25	146.97	0151.85 166.14	182.69	5185.56 190.00	223.66	5288.21	471.65	499.72	5740.74 763 64	782.36	793.84	799.67	845.85	867.28	880.21	. 29.006	924.56	937.34	500.03 500.03	034.24	078.79	10.060	181.82	196.89	1212.01	335.79 355.08	361.75	3482.14	608.12 608.12	788.10
Ŋ			6: 15	7: 15 8: 15	9: 15	10: 15	12: 15	13: 15	15: 15	16: 15	17:15	19:15	20: 15	21:15	23: 15	24: 15	25: 15 26: 15	27: 15	28: 15 29: 15	30: 15	31:15	32: 16 33: 16	34: 16	35: 16	36: 16 37: 16	38: 16	39: 16	40: 16 41: 16	42: 16	43: 16	44. IC 45: 16 46: 16	47: 16

Figure 2.6. Mass and relative intensity list from the spectrum shown in Fig. 2.5b. The proportions of α^{X} and δ are calculated from the values in the %BPI (% Base Peak Intensity) column.

Mutation	Charge	True mass	Some	examples
Mutation	change	change (Da)	α-chain	β-chain
Glu→Lys	+2	-1	O-Indonesia	C, E, O-Arab,
			Shuangfeng	G-Siriraj, Agenogi
Gln→Lys	+1	0		Alabama
Asp→Asn		-1	Dunn, Titusville	Korle-Bu, Yaizu
			G-Pest, G-Norfolk	Osu Christiansborg
Glu→Gln		-1	Memphis, Oleander	D-Iran, D-Punjab
Met→Lys		-3		Matera
Leu→Ile	0	0	(Cannot be de	termined by MS)
Asn→Ile		-1		Schlierbach
Thr→Pro		-4		Valletta
Pro→Thr		4		Linkoping
Lys→Gln	-1	0	J-Wenchang-Wuming	K-Woolwich
Gln→Glu		1	Mexico	Camden
Asn→Asp		1		Alamo, Yoshizuka
Lys→Met		3		Helsinki, Barbizon
Lys→Glu	-2	1	Sudbury	N-Baltimore
Hybrid	(+1)	-2	Lepore-Boston-Wa	ashington (with HbA ₂)

Table 2.1. Charge and mass changes due to mutations giving <±6 Da mass change.

Table 2.2. Assignment of the variant to either the α - or the β -chain assuming the mass scale is internally calibrated using the α -chain.

Apparent β–chain mass change ^a	Charge change ^b	Assignment of variant	Assignment of ±1 Da variants
Negative	Positive	β-chain	β-chain - 1 Da
Positive	Negative	β-chain	β-chain + 1 Da
Negative	Negative	α-chain	α-chain + 1 Da
Positive	Positive	α-chain	α-chain - 1 Da

^a Sign of the apparent mass change of the β -chain from normal.

^b Polarity change from normal inferred from ce-HPLC data.

2.4.5. Determination of minor components from the spectrum of the globin chains

There are several minor components that can be quantified from the MaxEnt deconvoluted spectrum of the globin chains. They are detailed below.

2.4.5.1. δ-chain (sequence mass 15,924.32 Da)

This is the non- α -chain present in Hb A₂ and normally occurs at about 3% of the β -chain

abundance. It is significantly elevated in many cases of β -thalassaemia trait and is particularly useful for distinguishing between a homozygous variant or a variant plus β thalassaemia when the variant occurs at the same ce-HPLC retention time as Hb A₂, e.g. D-Iran. It appears to be reliable with heterozygotes in which the variant has a similar abundance to the normal β -chain, e.g. ~40% in Hb D-Punjab and Hb S, but not when the variant occurs at low abundance, e.g. ~20% in Hb E. The level of the δ -chain is usually slightly higher than Hb A₂, because it is defined as $\delta/(\beta + \delta + \text{total }\gamma)$, whereas Hb A₂ is determined as a proportion of total Hb. When estimating the abundance of the δ -chain, it is imperative that the diluted blood sample has been carefully desalted before analysis, otherwise the δ -chain level will be erroneously elevated by interference from alkali metal adducts of the normal β -chain (Figure 2.1).

Figure 2.7 shows the centred MaxEnt spectra from (a) a normal sample ($\delta = 2.9\%$, Hb A₂ = 2.8% and (b) a sample from a patient with β -thalassaemia trait ($\delta = 5.8\%$, Hb A₂ = 6.1%).

The way in which the δ -chain levels are calculated from the %BPI (% base peak intensity) values are illustrated in Figures 2.8 and 2.9. The δ -chain values correlate well with the Hb A₂ values.

Figure 2.10 compares the δ -chain levels in (a) heterozygous D-Punjab (3.5%), (b) homozygous D-Punjab (3.7%) and (c) D-Punjab/ β -thalassaemia (5.8%).

Table 2.3 summarises the δ -chain levels observed in 152 D-Punjab samples analysed over several years. The calculated mass of $\beta^{D-Punjab}$ is 15,866.25 Da.

	n	δ% ±SD	Mean Mass ±SD (Da)
Heterozygous D-Punjab	116	3.49 ±0.34	15,866.828 ±0.036 (±2.2ppm)
Homozygous D-Punjab	19	3.64 ±0.30	15,866.283 ±0.043 SD (Error = 0.027, 1.7ppm)
D-Punjab/β-thalassaemia	17	6.12 ±0.81	15,866.269 ±0.037 (Error = 0.013, 0.82ppm)

Table 2.3. The δ -chain levels and mean masses observed for various D-Punjab samples.

It can be seen from the Table 2.3 that homozygous D-Punjab should be distinguishable from D-Punjab/ β -thalassaemia with 98% confidence (±2 SD) by the level of the δ -chain. Actually, the lowest δ -chain level was 5.2% in the D-Punjab/ β -thalassaemia samples, which is clearly well above the highest level in the homozygous D-Punjab samples (4.2%).

2.4.5.2. Glycated Hb chains and Hb A_{1c}

Glycation (addition of glucose) occurs on both the α - and β -chains to give covalently bound adducts at calculated masses of 15,288.52 and 16,029.38 Da, respectively, e.g. Figure 2.7. The glycation level (%) on each chain is calculated from the centred MaxEnt spectrum BPI values as:

 $\begin{array}{l} \alpha \text{-chain glycation} = 100\alpha_g/(\alpha_g + \alpha)\%\\ \text{and} \quad \beta \text{-chain glycation} = 100\beta_g/(\beta_g + \beta)\% \end{array}$

in which α and α_g represent the intensities of the normal and glycated α -chain, and β and β_g represent the intensities of the normal and glycated β -chain (Figure 2.7.).

Either or both of these glycation values may be expressed in terms of HbA_{1c} by calibration with standards. For example, plots of α - and β -

glycation against HbA_{1c} for data from a DCCT aligned ce-HPLC instrument gave the following linear regression equations⁽³⁾:

 α -chain glycation (%) = 0.678 HbA_{1c} -1.479, r = 0.990 β -chain glycation (%) = 1.096 HbA_{1c} -1.694, r = 0.993

Note. These equations are given as an illustration only and may not apply in general.

2.4.5.3. Carbonic anhydrase (CA1, sequence mass 28,781.08 Da)

Although CA1 is believed to have little or no diagnostic significance, it may be measured by processing the background subtracted raw data (m/z 980-1,180) with the MaxEnt Output Mass Range and Resolution set to 14800-32500 Da and 0.5 Da per channel respectively. The MaxEnt profile spectrum is then smoothed (2 x 4 Da, SG) and centred (1, top 90%, areas) in the usual way. CA1/(CA1 + α) is ~5% in normal samples. These MaxEnt processing parameters may also be used to detect the presence of dimers of the major chains.

ican ES+	ON																																										
(,5.00) efec	Inten %5																																										
0); Sb (25	INIASS																																										
),L40,R4(ON.																																										
1180,0.20																																											
340,980:	Inten %																																										
34] (Sp,0	IMASS																																										
-41242,It	No.																														= 2.9%												
; M1 [Ev																														10 . 37 3	(d + 0)/c												
i, 2x4.00)	Inten 7																														TUUX	ns											
); Sm (SG	Mass Mass																															loγ-chai	•										
00, Ar)	Z																									~					~	Z ↓											
1, 90.	%11C	0.20	0.26	0.22	0.24	27.41	1.12	0.48	0.41	0.59	0.43	0.38	0.24	0.61	0.40	0.19	0.42	0.25	3.76	0.50	0.33	0.19	0.40	0.26	0.37	37.20	1.76	0.87	0.41	0.00	0 ac 0	131	0.73	0.27	0.26	0.36	0.26	0.32	0.36	0.20	0.43	0.23	0.30
(Cen,	%BPI .	0.54	0.71	0.60	0.63	73.69 2	3.02	1.29	1.11	1.59	1.15	1.01	0.64	1.64	1.08	0.51	1.12	0.68	10.10	1.36	0.89	0.51	1.07	0.69	1.00	00 00	4.74	Z.33		04. 1.40	2.34 0.76	3.51	1.97	0.73	0.69	0.98	0.69	0.86	0.97	0.03	1.16	0.61	0.80
01) Cn	Inten	1.61e7	2.12e7	1.80e7	1.90e7	2.21e9	9.06e7	3.88e7	3.34e7	4.77e7	3.44e7	3.03e7	1.93e7	4.91e7	3.24e7	1.54e7	3.36e7	2.02e7	3.03e8	4.06e7	2.68e7	1.54e7	3.20e7	2.08e7	2.99e7	3.00e9 1	1.42e8	6.98e/	3.346/	4.4/e/	0.02e/ 2 28e7	2.205/ 1 05e8	5.90e7	2.19e7	2.06e7	2.93e7	2.06e7	2.58e7	2.90e7	1.bue/	3.48e7	1 82e7	2.41e7
1 (3.6	Mass	918.13	925.48	366.05	328.47	126.39	134.82	147.33	152.08	160.06	167.88	224.98	240.11	288.29	418.71	441.36	471.77	498.88	740.90	755.81	764.69	775.08	783.22	790.71	850.87	867.28	878.58	888./8	900.12	00.708	924.23 202 68	332.U0 129 15	172.95	182.53	205.06	212.87	348.10	356.19	358.33	3/1.41	496.64	507 78	640.29
-	õ	1: 14:	2: 14:	3: 14:	4: 15(5: 15	6: 15	7: 15	8: 15	9: 15	10: 15	11: 15:	12: 15:	13: 15:	14: 15-	15: 15-	16: 15-	17: 15-	18: 15	19: 15	20: 15	21: 15	22: 15	23: 15	24: 15	25: 15	26: 15	GL :/Z	CL :82	CI :67	30: 15 21: 15	32-16	33: 16	34: 16	35: 16.	36: 16,	37: 16	38: 16	39: 16	40: 10	42:16	43-16	44: 16

Mass/intensity list from the MaxEnt spectrum shown in Figure 2.7a illustrating how the δ -chain level is calculated from the %BPI (%Base Peak Intensity) values. Figure 2.8.

Scan ES+	%11C No																																										
o (25,5.00)	ISS Inten %BHI																																										
.20,L40,R40); SI	IC No Ma																																										
0.300,980:1180,0	Inten %BPI %I															- 100 85	- TUNUT -			r 5 20/2	0/ 0.0 10	r 3.1%																					
-41681, It36] (Sp.	No Mass															$A + S + G_{w} + A_{w}$			= 0.9103	- 0.0583) cocn n =	$on-\alpha = 0.0314 c$	1 0000	T-UUUU																			
2x4.00); M1 [Ev	Inten %BPI %IIC															Total non-o – f			$\beta/total non-\alpha$	S/total non-a	0/mai moni	Total y/total n	-																				
), Ar); Sm (SG,	No Mass																											$\gamma + \alpha \gamma = 3.45$															
n,1, 90.0(%TIC	0.23	0.18	0.19	30.45	0.98	0.66	0.38	0.67	0.66	0.39	0.41	0.30	3.04	0.19	0.52	0.28	0.41	34.53 þ		0.31	1.01	0.27	0 1 2 7 0	0.33	0.61	$0.48 G_{\gamma}$	0.71 AV	1.37	0.18	0.20	0.20	2.16	0.33	0.40	0.17	0.36	0.24	3.08	0.26	0.20	0.19	
Cn (Ce	an %BPI	∋7 0.68	97 0.51	37 0.54	s9 88.17	38 2.84	57 1.91	37 1.11	37 1.95	37 1.92	37 1.14	s7 1.19	7 0.87	∋8 8.80	s7 0.56	s7 1.52	97 0.81	e7 1.19	59 100.00	1 4 4	e/ 0.89	9/ 0.88	6/.0 /S	50 0.40 7 4 54	10.1 75	sz 1.76	s7 1.38	37 2.07	38 3.96 1	50 0.03	5/ 0.00	s7 0.57	38 6.25	37 0.97	37 1.15	s7 0.49	57 1.04	97 0.70	38 8.91	77 0.77	97 0.58	37 0.54	
(2.461)	ss Inte	08 2.49€	23 1.87¢	45 1.97€	41 3.23¢	38 1.04 _€	31 7.00€	33 4.08 €	36 7.16€	58 7.056	54 4.166	53 4.35€	79 3.196	3.23€	01 2.05€	39 5.57€	79 2.96	48 4.356	28 3.666	1.02 1.02	46 3.276	11 3.246	40 Z.896	20 5.346	56 3.476	04 6.45€	38 5.05€	73 7.57€	11 1.456	30 1.956	12 2.430 37 2.16e	33 2.096	70 2.29€	24 3.55€	51 4.20€	16 1.80€	37 3.80€	48 2.57€	22 3.27¢	58 2.806	58 2.136	15 1.996	
	No Ma	1: 14888.(2: 14966.	3: 15086.4	4: 15126.4	5: 15134.8	6: 15158.:	7: 15167.8	8: 15224.(9: 15288.5	10: 15419.5	11: 15470.6	12: 15497.7	13: 15741.(14: 15748.(15: 15756.:	16: 15771.	17: 15784.4	18: 15867.	19. 100/07/07	20: 15887.4	21: 15898.	-706GL :ZZ	23: 13924.	25: 15964 5	26: 15991.(27: 15995.3	28: 16008.	29: 16029.	30: 10043.	31. 10000	33: 16117.6	34: 16172.	35: 16182.2	36: 16212.5	37: 16227.	38: 16355.8	39: 16359.4	40: 16482.2	41: 16497.(42: 16540.	43: 16641.	

2.4.6. Some variants that can be identified from the spectra of their globin chains

Several variants produce MaxEnt processed spectra of the globin chains that are characteristic of the mutation, which allows them to be identified without the aid of ce-HPLC data. Their molecular weights (masses) are probably unique (except Lepore-Hollandia). Some of these mutations occur close to the N-terminus of the α - or β -chain causing retention of the initiator methionine. Others extend the C-terminus or are hybrids, and are summarised in Table 2.4.

Name	Mutation	Variant ^(a)	Mass (Da)	$\frac{\Delta \mathbf{M}^{(b)}}{(\mathbf{D}\mathbf{a})}$
St Jozef	α1Val→Leu	(,,,)	(=)	()
	$\alpha 1 \text{Val} \rightarrow (-1) \text{Met-}(+1) \text{Leu-} -$	18	15,271.61	145.23
J-Biskra	$\alpha 51-58 \text{ or } \alpha 52-59 \rightarrow 0$	21	14,361.54	-764.84
Wayne ^(c)	α 139-141 $\rightarrow \alpha$ 139NTVKLEPR	12	~15,617.5	~491
Natal	α140Tyr-Arg→0	24	14,807.02	-319.36
South Florida	β1Val→Met	9	15,899.31	32.07
	β 1Val \rightarrow (-1)Met-(1)Met	32	16,030.50	163.26
	β 1Val \rightarrow N-Ac(-1)Met-(+1)Met	9	16,072.54	205.30
Marseille	β2His→Pro			
	β 2His \rightarrow (-1)Met-(+1)Val-(+2)Pro-	55	15,958.41	91.17
Lepore- Hollandia ^(d)	Hybrid, δ22 β50	10-15	15,836.23	-31.01
	Check that variant elutes in Hb A ₂ wi	ndow to elim	ninate Gln→Pro	
Lepore- Baltimore ^(d)	Hybrid, δ50 β86	10-20	15,822.20	-45.04
P-Nilotic	Hybrid, β22 δ50	~20	15,955.33	88.09
	The variant elutes with Hb A ₀ by ce-l	HPLC (Bio-R	lad).	
Kenya ^(d)	^Α γ81 β86	10-20	15,922.23	54.99
HPFH-7	$^{G}\gamma$ only, no $^{A}\gamma$	7-12	15,994.27	127.03
Tak	β146Stop→147TKLAFLLSNFY	42	17,165.79	1298.55
	The variant elutes in the S-window by	y ce-HPLC (I	Bio-Rad).	

Table 2.4. Some variants that can be identified from the mass spectra of the globin chains.

Notes

^(a). Percentage of the variant in heterozygotes.

^(b). Mass difference of the variant chain relative to the normal chain.

^(c). Approximately 50% of the variant is de-amidated at α 139Asn. Hence the measured mass is ~0.5 Da higher than the sequence mass (15,616.94 Da).

^(d). The variant elutes in the Hb A₂ window by ce-HPLC (Bio-Rad).

2.5 References

⁽¹⁾ D.K. Rai, W.J. Griffiths, B. Landin, B.J. Wild, G. Alvelius and B.N. Green. Accurate mass measurement by electrospray ionization quadrupole mass spectrometry: detection of variants differing by <6 Da from normal in human hemoglobin heterozygotes. Anal. Chem. **75**, 1978-82 (2003).

⁽²⁾ R.H. Bateman, B.N. Green and M. Morris. Electrospray ionization mass spectrometric analysis of the globin chains in hemoglobin heterozygotes can detect the variants Hb C, D, and E. Clin. Chem. **54**, 1256-7 (2008).

⁽³⁾ J.P. Williams, H. Jackson and B.N. Green. Hb Belleville [β 10(A7)Ala \rightarrow Thr] affects the determination of Hb A_{1c} by routine cation exchange high performance liquid chromatography. Hemoglobin **33**, 45-50 (2009).

2.4.7. The average molecular masses of the normal human haemoglobin chains and some of their derivatives

	Mass (Da)
α-chain (major component of Hb excl. embryonic)	15,126.38
Carbamoylated α-chain (+CHNO, 43.025)	15,169.41 (in uraemia)
S-Carboxyamidomethylated α -chain (+Cam, 57.05)	15,183.43
Glycated α -chain (+glucose, 162.142)	15,288.52
α -chain + haem – H (non-covalent adduct)	15,741.87
β-chain (major component of adult Hb, Hb A)	15,867.24
Carbamoylated β-chain (+CHNO, 43.025)	15,910.27 (in uraemia)
Pyruvylated β -chain, Hb A _{1b} (+C ₃ H ₂ O ₂ , 70.048)	15,937.29 (in old samples)
S-Carboxyamidomethylated β -chain (+2 Cam)	15,981.34
Cysteinylated β-chain (+Cys via -S-S- bond)	15,986.38 (in old samples)
Glycated β-chain (+glucose, 162.142)	16,029.38
β -chain +(Cys-Gly) via -S-S- bond	16,043.44 (in old samples)
Glutathionylated β -chain (+305.31 via -S-S- bond)	16,172.55 (in old samples)
β -chain + haem – H (non-covalent adduct)	16,482.73
δ-chain , in Hb A ₂ (~3% in adult Hb)	15,924.32
δ -chain + haem – H (non-covalent adduct)	16,539.81
^G γ-chain (major component of foetal Hb, Hb F)	15,995.27
Acetylated ^G γ-chain (~10-17% in foetal Hb)	16,037.31
Glutathionylated ^G γ-chain	16,300.59 (in old samples)
$^{G}\gamma$ -chain + haem – H (non-covalent adduct)	16,610.77
$^{A}\gamma^{T}$ -chain (sometimes in foetal Hb, Hb F)	15,997.25
Acetylated $^{A}\gamma^{T}$ -chain (~10-17% in foetal Hb)	16,039.28
Glutathionylated ^A γ ^T -chain	16,302.56 (in old samples)
$^{A}\gamma^{T}$ -chain + haem - H (non-covalent adduct)	16,612.74
^A γ-chain (major component of foetal Hb, Hb F)	16,009.30
Acetylated ^A γ-chain (~10-17% in foetal Hb)	16,051.34
Glutathionylated ^A γ-chain	16,314.61 (in old samples)
$^{A}\gamma$ -chain + haem - H (non-covalent adduct)	16,624.79
ζ-chain (zeta-chain, in embryonic Hb)	(15,505.85)
Acetylated ζ-chain (100% in embryonic Hb)	15,547.89
ζ -chain + haem – H (non-covalent adduct)	16,163.38
ε-chain (epsilon-chain, in embryonic Hb)	16,071.66
ϵ -chain + haem – H (non-covalent adduct)	16,687.15

Table 2.5. The average molecular masses of some of the haemoglobin chains.

Based on: C = 12.011 Da, H = 1.00794 Da, N = 14.00674 Da, O = 15.9994 Da, S = 32.066 Da. The average and monoisotopic masses of the haem are 616.50 Da and 616.1773 Da, respectively.

SECTION 3

3.0 Step 3: The detection and identification of the hybrid haemoglobins by electrospray ionization mass spectrometry	. 48
3.1. Summary	. 48
3.2. The hybrid (fusion) haemoglobins	. 48
3.3. Tandem mass spectrometry of the β -, β -, γ - and hybrid-chains	. 48
3.3.1. Sample preparation	. 48
3.3.2. Acquisition of tandem mass spectra from the Tune Page	. 48
3.3.3. Mass scale calibration	. 50
3.4 Examples	. 50
3.4.1. Hereditary Persistence of Foetal Haemoglobin (HPFH).	. 50
3.4.2. Hb Kenya (^A γ80 β87), also known as HPFH-7; Kenya	. 50
3.4.3. Hb P-Nilotic (β22 δ50).	. 51
3.5. Guidelines for the detection and identification of the Lepore haemoglobins by electrospray ionization mass spectrometry	. 59
3.5.1. Introduction.	. 59
3.5.2. Intact chain analysis by electrospray ionization mass spectrometry (ESI-MS)	. 59
3.5.3. Tryptic peptide analysis by ESI-MS	. 59
3.5.4. Tandem ESI-MS of the intact chains	. 60
3.5.5. Summary of strategy for identifying Lepores	. 61
3.6 References	. 71

3.0 Step 3: The detection and identification of the hybrid haemoglobins by electrospray ionization mass spectrometry

3.1. Summary.

In this section it is shown how electrospray ionization mass spectrometry (ESI-MS) can be used to detect and identify the hybrid (fusion) haemoglobins. Some of them can be identified directly from their mass spectra (Lepore-Baltimore, Kenya and P-Nilotic), or from their mass spectra together with ce-HPLC data (Lepore-Hollandia). If necessary, identification may be confirmed by tandem mass spectrometry of the intact hybrid chains, and tandem mass spectra of Lepore-Hollandia, Lepore-Baltimore, Kenya and P-Nilotic are shown. In addition, tandem mass spectra from a Lepore-Boston-Washington (LBW) heterozygote (90% β-chain, 10% LBW chain) are shown. In this case, the LBW-chain and the normal β -chain only differ in mass by 2 Da, and are therefore unresolved in the mass spectra. Tandem mass spectra of the normal β -, δ - and ^Gγ-chains are also given. The molecular weights and principle product ions from most of the hybrid chains are listed in Table 3.1.

3.2. The hybrid (fusion) haemoglobins.

Four types of hybrid haemoglobins have been described⁽¹⁾. They have the same number of amino acids as the β -chain (146) except for Lincoln Park, which has 145. The Lepores have an N-terminal section of the δ -chain fused to a C-terminal section of the β -chain. The anti-Lepores have an N-terminal section of the Bchain fused to a C-terminal section of the δ chain. Kenya (also known as HPFH-7; Kenya) has an N-terminal section of the $^{A}\gamma$ -chain fused to a C-terminal section of the β-chain. Hb Parchman has a section of the β -chain sandwiched between N- and C-terminal sections of the δ -chain. Their structures, sequence molecular weights (masses) and principal product ions are summarised in Table 3.1. The normal β -, δ - and $^{G}\gamma$ -chains are also included in this table.

3.3. Tandem mass spectrometry of the β -, δ -, γ - and hybrid-chains.

Except for the γ -chains, the non- α -chains cleave mainly at the N-terminal side of 36Pro, 51Pro and 124Pro, giving rise to distinctive y"₁₁₁, y"₉₆ and y"₂₃ fragments, respectively. Prominent b₃₂b₃₅ and b₄₂-b₄₇ fragments associated with cleavage at 36Pro and 51Pro are also produced. The γ -chains differ from the other chains in that 51Pro is replaced by 51Ala, which results in y"₉₈ becoming dominant instead of y"₉₆. Nevertheless, they still produce y"₁₁₁, y"₂₃, b₃₂-b₃₅ and b₄₂-b₄₇ fragments. Each chain has a characteristic product ion spectrum, which, together with its molecular weight, allows the chain to be positively identified.

3.3.1. Sample preparation

Samples are prepared by simply diluting whole blood 500-fold in 50% aqueous acetonitrile containing 0.2% formic acid as described in Section 2.2.3. Introduce the sample solution as described in Section 2.3.1. The desalting step may be omitted when undertaking tandem MS.

3.3.2. Acquisition of tandem mass spectra from the Tune Page.

On the Tune Page, display the precursor ion with 16 charges. The calculated m/z values of the precursor ions are given at the foot of Table 3.1. On triple quadrupole instruments, increase the intensity of the precursor ion by reducing the resolution (HM-Res 1) and increasing the ion energy (Ion Energy 1) until a point is reached beyond which the intensity stops increasing. From Acquire, select Daughter Scan, select MCA. Enter the m/z value at the top of the precursor ion as observed on the tune page into Set Mass (this may be slightly different to its calculated value). Acquire data over the m/zrange 500-1,500 with a collision energy of 26V using argon as the collision gas at 2.5 mbar pressure. Ensure the Entrance and Exit apertures are set to a low value, e.g. 2V. If this is an option, set the number of channels per m/z. unit to 16 as follows. From the **Tune Page**, select Options, and from Set Instrument Threshold, set, in profile data, Baseline level to 1 and Points per Dalton (sic m/z unit) to 16. Acceptable data can usually be obtained by acquiring for 5 minutes.

Reference

⁽¹⁾ R.C. Hardison, D.H.K. Chui, B. Giardine, C. Riemer, G.P. Patrinos, N. Aganou, *et al.* HbVar: A relational database of human hemoglobin variants and thalassemia mutations at the globin gene server. Hum.Mutat., **19**, 225-33 (2002) \\globin.bx.psu.edu

Name β Name β % in het 15,867	ø	ď	Lepore-	Lepore- Raltimore	Lepore-	Kenya	Miyada	P-Nilotic	Lincoln Park	P-India	P-Congo	Douchmon
$\begin{array}{c c} & \beta 1 - 14 \\ Mr & 15,867. \\ \% \text{ in het} & 609 \\ \mathbf{v}_{24}^{44} & 609 \end{array}$			nonanula		Boston-W						0 ^{2π00-1}	rarcuman
Mr 15,867. % in het 609.2	16 81–146	$^{G}\gamma 1-146$	δ22-β50	δ50-β86	δ87-β116	Ay80-β87	β12-822	β22-δ50	β22-δ50	β87-δ116	β22-δ116	δ-β-δ
% in het [09.2]	24 15,924.32	15,995.27	15,836.23	15,822.20	15,865.23	15,922.23	15,897.29	15,955.33	15,856.20	15,953.36	15,926.33	15,980.38
V23 ⁴⁺ 609.2			15% ESI	11% ESI	7-13% Lit	~15%inc 8	17% Lit	24% ESI	14% Lit	23% Lit	NR	1.6% Lit
	2 625.0	634.2	609.2	609.2	609.2	609.2	625.0	625.0	y22 600.2	625.0	625.0	625.0
y ₂₃ ³⁺ 811.5	9 833.0	845.3	811.9	811.9	811.9	811.9	833.0	833.0	y22 799.9	833.0	833.0	833.0
y ₉₆ ¹¹⁺ 940.6	949.8	949.7	940.6	940.6	944.5	943.1	949.8	949.8	y95 940.8	948.4	945.9	948.4
y ₉₇ ¹¹⁺ 949.7	957.8	957.7	949.7	948.5	952.4	951.0	957.8	957.8	y96 948.7	927.6	955.1	927.6
y ₉₈ ¹¹⁺ 957.7	7 965.7	965.6	957.7	956.4	960.3	958.9	965.7	965.7	y97 956.7	965.5	963.0	965.5
y ₉₃ ¹⁰⁺	1,016.4sm	1,021.7				1,014.4						
y ₉₄ ¹⁰⁺	1,023.5sm	1,028.8				1,021.5						
y_{95}^{10+}	1,035.0sm	1,037.5				1,030.2						
y ₉₆ ¹⁰⁺ 1,034.	5 1,044.7	1,044.6	1,034.5	1,034.5	1,038.8	1,037.3	1,044.7	1,044.7	$y_{95} 1,034.8$	1,043.1	1,040.4	1,043.1
y ₉₇ ¹⁰⁺ 1,044.	6 1,053.4	1,053.3	1,044.6	1,043.2	1,047.5	1,046.0	1,053.4	1,053.4	$y_{96} 1,043.5$	1,053.2	1,050.5	1,053.2
y ₉₈ ¹⁰⁺ 1,053.	3 1,062.1	1,062.0	1,053.3	1,051.9	1,056.2	1,054.7	1,062.1	1,062.1	$y_{97} 1,052.2$	1,061.9	1,059.2	1,061.9
y ₉₆ ⁹⁺ 1,149.	3 1,160.7	1,160.6	1,149.3	1,149.3	1,154.1	1,152.5	1,160.7	1,160.7	y ₉₅ 1,149.7	1,158.9	1,155.9	1,158.9
y_{97}^{9+} 1,160.	6 1,170.4	1,170.3	1,160.6	1,159.0	1,163.8	1,162.1	1,170.4	1,170.4	y ₉₆ 1,159.3	1,170.1	1,167.1	1,170.1
y ₉₈ ⁹⁺ 1,170.	2 1,180.0	1,179.9	1,170.2	1,168.7	1,173.5	1,171.8	1,180.0	1,180.0	$y_{97} 1,169.0$	1,179.8	1,176.9	1,179.8
y ₁₁₁ ¹¹⁺ 1,104.	1,112.2	1,110.7	1,104.2	1,102.9	1,106.8	1,104.1	1,112.2	1,112.2	$y_{110} 1,103.2$	1,112.0	1,109.6	1,112.0
b ₄₂ ⁴⁺ 1,174.	9 1,167.1	1,188.8	1,167.1	1,167.1	1,167.1	1,188.8	1,160.3	1,174.9	1,174.9	1,174.9		
b ₄₃ ⁴⁺ 1,207.	1 1,199.4	1,217.6	1,199.4	1,199.4	1,199.4	1,217.6	1,192.6	1,207.1	1,207.1	1,207.1	1,207.1	1,319.9
$\mathbf{b_{44}}^{4+}$ 1,228.	9 1,221.2	1,239.4	1,221.2	1,221.2	1,221.2	1,239.4	1,214.4	1,228.9	1,228.9	1,228.9	1,228.9	1,235.7
b ₄₅ ⁴⁺ 1,265.	7 1,257.9	1,276.2	1,257.9	1,257.9	1,257.9	1,276.2	1,251.2	1,265.7	1,265.7	1,265.7	1,265.7	1,272.5
$\mathbf{b_{46}}^{4+}$ 1,280.	0 1,272.2	1,290.4	1,272.2	1,272.2	1,272.2	1,290.4	1,265.5	1,280.0	1,280.0	1,280.0	1,280.0	1,286.7
\mathbf{b}_{47}^{4+} 1,308.	7 1,301.0	1,319.0	1,301.0	1,301.0	1,301.0	1,319.0	1,294.2	1,308.7	1,308.7	1,308.7	1,308.7	1,315.5
\mathbf{b}_{32}^{3+} 1,124.	6 1,114.3	1,143.3	1,114.3	1,114.3	1,114.3	1,143.3	1,105.3	1,124.6	1,124.6	1,124.6		
\mathbf{b}_{33}^{3+} 1,157.	7 1,147.3	1,176.3	1,147.3	1,147.3	1,147.3	1176.3	1,138.3	1,157.7	1,157.7	1,157.7	1,157.7	1,166.7
$\mathbf{b_{34}}^{3+}$ 1,190.	7 1,180.4	1,209.4	1,180.4	1,180.4	1,180.4	1209.4	1,171.4	1,190.7	1,190.7	1,190.7	1,190.7	1,199.7
$\mathbf{b_{35}}^{3+}$ 1,245.	1 1,234.8	1,263.8	1,234.8	1,234.8	1,234.8	1263.8	1,225.8	1,245.1	1,245.1	1,245.1	1,245.1	1,254.1
Precursor 992.3	7 996.3	1,000.7	8.066	989.9	992.6	996.1	994.6	998.2	992.0	1.866	996.4	8.666

Table 3.1. The principal product ions of some normal and hybrid globin chains

3.3.3. Mass scale calibration.

External mass scale calibration of sample spectra may be undertaken by acquiring a tandem mass spectrum from a normal β -chain obtained from a separate introduction of an appropriate blood sample as follows:

From **Tools**, select **Make calibration**, and in the **Make new calibration** window select MSMSBeta16.ref from **Reference file**.

Select **Background subtract.** Set Polynomial order to 25, Below curve (%) to 5. Tolerance to 0.010.

Select **Smooth.** Set Peak width (Da) to 1.5. Set number of smooths to 2.

Select **Savitzky Golay**. Set Min peak width at half height (channels) to 4.

Select **Centroid top** (%). Set to 50.

Select **Heights** with the **Create centred spectrum** box turned on.

Press **OK** from the **Make new calibration** window.

This should calibrate the product ion spectrum and a **Calibrate** report should appear to show how well the experimental data fit the reference data. Press **OK** to accept the calibration.

The resulting calibration may then be applied to other tandem mass spectra acquired under the same conditions as the calibration spectrum. These spectra may be acquired either before or after acquiring the calibration spectrum.

Display the spectrum requiring calibration.

From **Tools**, select **Apply Calibration**. This should show the parameters of the current calibration.

Press **OK** to calibrate the spectrum on display.

The calibrated sample spectra are then background subtracted and smoothed using the same parameters as those used to make the calibration. Finally, the spectra are centred with the Create centred box turned off in order to optimise the mass accuracy.

3.4 Examples

All the experimental data were acquired on a Micromass Quattro Ultima. On the following pages are shown the tandem mass spectra from the β -, δ -, and $^{G}\gamma$ -chains. Also shown are MaxEnt deconvoluted spectra from Kenya and P-Nilotic heterozygotes. Tandem mass spectra

from the latter two Hbs are also given and confirmed their identity.

3.4.1. Hereditary Persistence of Foetal Haemoglobin (HPFH).

Part of the m/z spectrum obtained from the analysis of a 500-fold diluted and desalted HPFH sample is shown in Figure 3.1a. The MaxEnt deconvoluted spectrum from these data is shown in Figure 3.1b. It can be seen that the masses of the major non- α components are within experimental error of the sequence masses of the β -, δ -, ${}^{G}\gamma$ - and ${}^{A}\gamma$ -chains (Table 3.1). The putative β^{16+} , δ^{16+} and ${}^{G}\gamma^{16+}$ ions, at m/z992.7, 996.3 and 1,000.7 respectively, were subjected to tandem MS. The resulting product ion spectra are shown in Figures 3.2. and 3.3. (a) from β^{16+} , (b) from δ^{16+} and (c) from ${}^{G}\gamma^{16+}$ precursor ions. It can be seen that the three chains produce quite distinct tandem mass spectra and that the product ions listed in Table 3.1, when present, occur within experimental error of their predicted m/z values. These results confirm that the sample is from a heterozygote for hereditary persistence of foetal haemoglobin.

3.4.2. Hb Kenya (^A γ 80 - - β 87), also known as HPFH-7; Kenya.

The literature⁽¹⁾ describes Kenya as a hybrid of ^A γ through 80 with β from 87. Like the β -chain, Kenya has 146 amino acid residues, and occurs together with ${}^{G}\gamma$ (${}^{G}\gamma$ /total $\gamma = 96\%$, i.e. negligible $^{A}\gamma$). In heterozygotes, the fractions of Hbs A, Kenya, F and A₂ are given as 71.9, 14.9, 11.1 and 2.1% respectively (n=7). ESI-MS measurements made on ten Kenya heterozygotes gave mean values for the β^{A} -, (Kenya + δ)- and ^G γ -chains of 73.8±4.2, 16.1±4.7 and 10.1±2.0% SD respectively. The Kenya- and δ -chains are too close together (2 Da) to be measured separately. Although the mean proportions agree fairly well with the literature, there was a wide spread of values between individual samples for (Kenya + δ), which varied from 8.6 to 21.7%. The ce-HPLC trace from an Hb Kenya heterozygote is shown in Figure 3.4.

Figure 3.5a shows the MaxEnt deconvoluted spectrum from 500-fold diluted and desalted blood of an Hb Kenya heterozygote. Present are two non- α components whose masses, 15,922.14 Da and 15,995.26 Da, are consistent with the sequence masses of Kenya- and $^{G}\gamma$ -chains respectively (Table 3.1). The presence of

both these components strongly suggests Kenya, which was confirmed by tandem MS of the variant ion with 16 charges (m/z 996.1). The upper and lower parts of the resulting product ion spectrum are shown in Figures 3.6b and 3.7b respectively. The m/z values of the major ions in this spectrum are within experimental error of the theoretical values given in Table 3.1, thus confirming Kenya. For comparison, the corresponding product ion spectra from the normal β -chain are shown in Figures 3.6a. and 3.7a.

3.4.3. Hb P-Nilotic (β22 - - δ50).

This is described in the literature⁽¹⁾ as a hybrid of β through 22 with δ from 50 and is present at 16-21% of total Hb in heterozygotes. It appears to be silent by ce-HPLC. Its sequence mass (15,955.33 Da) is 88.09 Da higher than β^A , a mass change that cannot occur by a single base change in the β -chain nucleotide codon. Thus, the presence of a chain with a mass within experimental error of 15,955.33 Da would strongly suggest P-Nilotic. Figure 3.5b shows the MaxEnt deconvoluted spectrum from a heterozygote (variant abundance 24.3% of total non- α), in which the variant has a mass of 15,955.27 Da, close to the sequence mass of P-Nilotic. This was confirmed by tandem MS of the variant ion with 16 charges (m/z 998.2). The upper and lower parts of the resulting product ion spectrum are shown in Figures 3.6c and 3.7c respectively. The m/z values of the major product ions are consistent with the calculated values shown in Table 3.1, thus confirming the variant as P-Nilotic.

Figure 3.4. Bio-Rad ce-HPLC trace from a Hb Kenya heterozygote.

3.5. Guidelines for the detection and identification of the Lepore haemoglobins by electrospray ionization mass spectrometry

3.5.1. Introduction.

The Lepore hybrid (fusion) haemoglobins (Hbs) are composed of normal α -chains (141 amino acids) and non- α -chains (146 amino acids). The non- α -chains comprise an N-terminal section of the δ -chain fused to a C-terminal section of the β -chain. Three Lepore Hbs are described in the

literature⁽¹⁾ and have been analysed by mass spectrometry^(2,3). Their abundance in heterozygotes ranges approximately from 7- $15\%^{(1)}$, and they elute close to Hb A₂ by ce-HPLC (Figure 3.5.1.). Their names, sequences and molecular weights (masses) are given in Table 3.5.1. Lepore-Boston-Washington (LBW) is the most common Lepore.

Table 3.5.1. The sequences and m	asses of the Lepores an	d the normal β-chain.
----------------------------------	-------------------------	-----------------------

Name	Sequence	Sequence Mass (Da)
Lepore-Hollandia (δ22 β50)	δ(1-49) - β(50-146)	15,836.23
Lepore-Baltimore ($\delta 50 - \beta 86$)	δ(1-85) - β(86-146)	15,822.20
Lepore-Boston-Washington (δ87 β116)	δ(1-115) - β(116-146)	15,865.23
Normal β-chain	β(1-146)	15,867.24

3.5.2. Intact chain analysis by electrospray ionization mass spectrometry (ESI-MS).

Lepores Hollandia and Baltimore differ significantly in mass from normal β . Thus, in heterozygotes, these two Lepores are readily resolved from normal β when 500-fold diluted blood is analysed by ESI-MS^(4,5). Their masses, determined in this way, can be used to indicate their presence. The mass difference of Hollandia from β^A (-31.01 Da) can also be produced by the β -chain mutation Gln \rightarrow Pro, but the latter would be almost silent by ce-HPLC, whereas the Lepores co-elute with Hb A₂.

The mass of Lepore-Baltimore (15,822.20 Da) differs from normal β by -45.04 Da, which cannot occur by a single base change in the β -chain codon. Hence, a low-abundance chain with a mass within experimental error of 15,822.20 Da would strongly suggest Lepore-Baltimore.

Unfortunately, LBW is only 2.01 Da lower in mass than β^A , and is not resolved from the latter in heterozygotes. The measured mass is the abundance weighted mean of the two chains, i.e. 0.14 to 0.30 Da lower than β^A assuming 7-15% abundance of LBW. Of the three Lepores, LBW

is the most difficult to detect and identify in heterozygotes by ESI-MS, and tandem MS of the intact β^A plus LBW-chains is necessary for confirmation. ESI-mass spectra of (a) Hollandia/ β^E , (b) Baltimore/ β^A and (c) LBW/ β^A heterozygotes are shown in Figure 3.5.2.

3.5.3. Tryptic peptide analysis by ESI-MS.

The tryptic peptides from the Lepores have the same sequence as those from either the β - or δ chains. There are no peptides specific to a Lepore without also originating from the β - or δ -chains. However, in heterozygotes, provided the δ -chain occurs at a much lower level than the Lepore, elevated levels of Lepore peptides that are the same as the δ -chain yet differ from the β -chain suggest the presence of a Lepore. These peptides are shown in Table 3.5.2. Part spectra of 30-min digests show elevated levels of $\delta T2^{2+}$ (*m/z* 480.29, Figure 3.5.3.), $\delta T3^{2+}$ (*m/z* 628.85, Figure 3.5.4.) and $\delta T5^{2+}$ (*m*/*z* 1,023.48 (2nd isotope), Figure 3.5.5.) in Baltimore (b) and LBW (c) heterozygotes compared with the control (a). $\delta T2^+$ and $\delta T3^+$ are also significantly increased over their normal levels (spectra not shown), and $\delta T2^+$ (*m/z* 959.531) stands out particularly clearly in the 30-minute digest spectrum.

Peptide	(M+H) ²⁺	(M + H) ⁺	Produced by
δΤ2	480.270	959.531	All Lepores and δ-chain
δΤ3	628.834	1,256.660	All Lepores and δ-chain
δΤ5	1,022.970	2,044.933	Lepore-Baltimore, LBW and δ-chain
δT10 ^(a)	732.844	1,464.679	LBW and δ -chain (peptide contains Cys)

Table 3.5.2. δ-chain tryptic peptides produced by the Lepores

^(a) Normally occurs in 30 min-digest as $\delta T(10-11)^{3+}$ at m/z 858.08 and $\delta T(10-11)^{2+}$ at m/z 1,286.61 since δ 94Asp N-terminal to δ 95Lys retards cleavage between δ T10 and δ T11. The m/z values are monoisotopic.

3.5.4. Tandem ESI-MS of the intact chains.

The Lepores give product ion spectra that differ from the β -chain in many respects. The m/zvalues of the b_{42}^{4+} to b_{47}^{4+} and b_{32}^{3+} to b_{35}^{3+} product ions all differ from those of the corresponding β -chain ions, but are the same from all the Lepores and cannot be used to distinguish the latter (Table 3.5.3). Nevertheless, they can be used to establish that a variant is indeed a Lepore and not a β -chain variant. Some of the y"₉₆, y"₉₇, y"₉₈ and y"₁₁₁ ions from Baltimore and LBW differ significantly in mass from one another and from their corresponding β - and Hollandia-chain ions. The y"₉₆ and y"₉₈ ions are particularly useful for positively identifying LBW in heterozygotes.

Table 3.5.3. Calculated <i>m/z</i> values of potentially diagnostic product ions in tandem mass spectra
from intact β - and Lepore-chain ions with 16 charges.

Ion	β-chain	Hollandia	Baltimore	LBW	
b_{32}^{3+}	1,124.6		1,114.3		
b33 ³⁺	1,157.7		1,147.3		
b_{34}^{3+}	1,190.7		1,180.4		
b35 ³⁺	1,245.1		1,234.8		
b_{42}^{4+}	1,174.9		1,167.1		
b43 ⁴⁺	1,207.1		1,199.4		
b_{44}^{4+}	1,228.9		1,221.2		
b_{45}^{4+}	1,265.7		1,257.9		
$b_{46}{}^{4+}$	1,280.0		1,272.2		
b_{47}^{4+}	1,308.7		1,301.0		
y96 ¹¹⁺		940.6	940.6 944.5		
y97 ¹¹⁺	94	49.7	952.4		
y ₉₈ ¹¹⁺	95	57.7	960.3		
y96 ¹⁰⁺		1034.5	1,038.8		
y97 ¹⁰⁺	1,0)44.6	1,047.5		
y98 ¹⁰⁺	1,0)53.3	1,056.2		
y111 ¹¹⁺	1,1	.04.2	1,102.9	1,106.8	
Precursor	992.71	990.77	989.90	992.58	

Figure 3.5.6. compares tandem mass spectra from (a) Hollandia, (b) Baltimore, (c)

heterozygous LBW (i.e. normal β plus ~10% LBW) and (d) the normal $\beta\text{-chain.}$ Figures

3.5.7. and 3.5.8. show sections of these spectra on expanded scales.

With heterozygous Hollandia, the normal β - and Hollandia-chains are resolved. Hence the Hollandia precursor ion (m/z 990.8) can be selected without interference from normal β . In the resulting product ion spectrum, the presence of b ions corresponding to Lepores (Figure 3.5.7.) together with y" ions corresponding to β /Hollandia confirms the identity of Hollandia, provided the mass of the intact chain corresponds to that of Hollandia. Similar arguments apply to confirming the presence of Baltimore. In this case, several y" ions with m/zvalues specific to Baltimore are also present, namely y"97, y"98 with 10 and 11 charges (Figure 3.5.8b) and y"111 with 11 charges (Figure 3.5.7b). In the rare occurrence of homozygous LBW or LBW/β-thalassaemia, y"96, y"97 and y"₉₈ with 10 and 11 charges and y"₁₁₁ with 11 charges have m/z values specific to LBW.

The situation is different in the case of heterozygous LBW, since the LBW-chain is not resolved from the β -chain. Here, the precursor ion (m/z 992.6) contains both the β -chain $(\sim 90\%)$ and the LBW-chain $(\sim 10\%)$. When the resulting product ion spectrum (Figure 3.5.7c) is compared with the normal β -chain spectrum (Figure 3.5.7d), the presence of minor b_{34}^{3+} , b_{35}^{3+} and b_{47}^{4+} ions (marked * in Figure 3.5.7c) indicate the presence of LBW. Although these ions have m/z values common to all the Lepores, they can only originate from LBW in this case, since the precursor ion contains only LBW and normal β . Conclusive further evidence for the presence of LBW are y"96¹¹⁺ and y"96¹⁰⁺ ions (m/z 944.5 and 1,038.7) in Figure 3.5.8c whose m/z values are unique to LBW and positively identify it in the presence of the dominant β chain. Although less abundant, the m/z values of y''_{98}^{11+} and y''_{98}^{10+} are also specific to LBW.

A further complication would arise in detecting and identifying a Hollandia/Sickle (β^{S}) heterozygote, because the mass of β^{S} (15,837.26 Da) is only 1 Da higher than that of Hollandia. These species would not be resolved and would have a net mass 0.1-0.2 Da lower than β^{S} , which would be difficult to detect. Tandem mass spectrometry does not offer an easy solution because the Sickle mutation (β 6Glu \rightarrow Val) occurs close to the N-terminus of the β -chain. Hence all the b ions in Figure 3.5.7a would be 1 Da doublets, again difficult to detect since they would be unresolved, with net masses 0.1-0.2 Da lower than the masses for sickle. A tryptic digest would allow easy detection of the sickle mutation by giving a peptide 30 Da lower than the mass of normal β T1. Since there would be no normal β -chain in the sample and the sequence of the T1 peptide from Hollandia is the same as normal β T1, the presence of a tryptic peptide with the mass of normal β T1 would suggest the presence of Lepore-Hollandia. This suggestion would be reinforced if the abundance of the δ T2²⁺ and δ T3²⁺ peptide ions were enhanced relative to a normal control provided the δ -chain abundance was low in the Hollandia/(β ^S) heterozygote.

Tandem mass spectra were generated on a Quattro Ultima using argon as the collision gas $(2.5 \times 10^{-3} \text{ mbar})$ with 26 volts collision energy. Mass scale calibration employed product ions present in the tandem mass spectrum of the normal β -chain.

3.5.5. Summary of strategy for identifying Lepores.

- 1. An apparently high level of Hb A₂ (10-15%) may indicate the presence of a Lepore (Figure 3.5.1.).
- 2. Analyse 500-fold diluted and desalted blood. Intact chains within experimental error of 15,836.23 Da or 15,822.20 Da suggest the presence of Lepore-Hollandia (Figure 3.5.2a) or Lepore-Baltimore (Figure 3.5.2b) respectively. A single non- α -chain between ~15,867.1 Da and ~15,866.9 Da (normal β minus 0.14 to 0.30 Da) is consistent with a normal LBW heterozygote (Figure 3.5.2c), but many other possibilities can give this mass. Estimate the proportion of the δ -chain (15,924.32 Da).
- 3. Analyse a 30-minute digest of the sample plus a control with a normal level of δ -chain (3-4%). Elevated levels of $\delta T2^{2+}$ (m/z 480.27), $\delta T3^{2+}$ (m/z 628.83), $\delta T2^+$ (m/z 959.53), $\delta T3^+$ (m/z 1,256.66), and $\delta T5^{2+}$ (m/z 1,022.97) indicate the Lepores according to Table 3.5.2 and Figs 3.5.3-3.5.5, provided the level of the δ -chain in the sample is low. These results may indicate the presence of a previously unsuspected LBW heterozygote.

4. The identification of the Lepores may be confirmed, if deemed necessary, by tandem MS of the intact variant chains as follows. Analyse the appropriate $(M+16H)^{16+}$ precursor ion from the intact chain by tandem MS to confirm Hollandia (m/z 990.8) or Baltimore (m/z 989.9). The presence of Hollandia is confirmed provided its mass is within experimental error of 15,836.23 Da and b-ions indicative of a Lepore are present (Table 3.5.4, bold font and Figure 3.5.7a). The presence of Baltimore is confirmed provided its mass is within experimental error of 15,822.20 Da and the ions shown in bold font in Table

3.5.4 are present (Figure 3.5.7b). For LBW in heterozygotes, select the precursor ion at $m/z \sim 992.6$ (normal β -chain plus LBW-chain). The presence of ions shown bold in Table 3.5.4 and indicated with an asterisk (*) in Figures 3.5.7c and particularly 3.5.8c confirms the presence of LBW.

Conditions for tandem MS.

On triple quadrupole instruments, scan MS2 from m/z 500-1500. The collision energy is typically 26V using argon as the collision gas at 2.5 x 10⁻³ mbar collision cell pressure.

Table 3.5.4. Masses of intact chains and m/z values of product ions necessary for identifying the Lepores.

Chain name	Mass (Da) ⁽⁶⁾	b 47 ⁴⁺	y''96 ¹¹⁺	y"98 ¹¹⁺	y''96 ¹⁰⁺	y"98 ¹⁰⁺	y"111 ¹¹⁺
Lepore-Hollandia ^a	15,836.23	1,301.0	940.6	957.7	1,034.5	1,053.3	1,104.2
Lepore-Baltimore ^a	15,822.20	1,301.0	940.6	956.4	1,034.5	1,051.9	1,102.9
Lepore-BW ^b	15,865.23	1,301.0	944.5	960.3	1,038.8	1,056.2	1,106.8
Lepore-BW/ β^A	15,866.9 ^c	1,301.0	944.5	960.3	1,038.8	1,056.2	1,106.8
Normal β-chain	15,867.24	1,308.7	940.6	957.7	1,034.5	1,053.3	1,104.2

Masses and m/z values in bold font are the minimum recommended for confirmation.

 a Applies to normal heterozygotes, homozygotes and Lepore/ β -thalassaemia.

^b Applies to LBW homozygotes and LBW/β-thalassaemia.

^c Approximate mass assuming 15% Lepore.

Figure 3.5.1. Bio-Rad ce-HPLC trace from a Lepore-Boston-Washington heterozygote

Figure 3.5.2. MaxEnt deconvoluted ESI-mass spectra from three Lepore heterozygotes

3.6 References

⁽¹⁾ R.C. Hardison, D.H.K. Chui, B. Giardine, C. Riemer, G.P. Patrinos, N. Aganou, *et al.* HbVar: A relational database of human hemoglobin variants and thalassemia mutations at the globin gene server. Hum.Mutat. **19**, 225-33 (2002). (http://globin.bx.psu.edu).

⁽²⁾ B.N. Green, R.W.A. Oliver, A.M. Falick, C.H.L. Shackleton, E. Roitman and H.E.Witkowska (1990) Electrospray MS, LSIMS and MS/MS for the rapid detection and characterization of variant hemoglobins, in Biological Mass Spectrometry, A.L. Burlingame and J.A. McCloskey (Eds), pp. 129-146. Elsevier, Amsterdam.

⁽³⁾ M. De Caterina, P. Esposito, E. Grimaldi, G. Di Maro *et al.*, Characterization of hemoglobin Lepore variants by advanced mass spectrometric methods. Clin. Chem. **38**, 1444-48 (1992).

⁽⁴⁾ B.J. Wild, B.N. Green, E.K. Cooper, M.R.A. Lalloz, S. Erten, A.D. Stephens and D.M. Layton. Rapid identification of hemoglobin variants by electrospray ionization mass spectrometry. Blood Cells Mol. Dis. **27**, 671-704 (2001).

⁽⁵⁾ D.K. Rai, W.J. Griffiths, B. Landin, B.J. Wild, G. Alvelius and B.N. Green. Accurate mass measurement by electrospray ionization quadrupole mass spectrometry: detection of variants differing by <6 Da from normal in human hemoglobin heterozygotes. Anal. Chem. **75**, 1978-82 (2003).

SECTION 4

4.0. Step 4. Digestion of the haemoglobin in blood with trypsin, nomenclature and the peptides produced in practice	.74
4.1. Procedure for digesting the haemoglobin in blood samples with trypsin in order to produce mixtures of peptides suitable for variant identification by electrospray ionization mass spectrometry (ESI- MS)	.76
4.1.1. Preparation of the reagent solutions used in digesting 50-fold diluted blood with trypsin	. 77
4.1.2. Mass scale calibration of the tryptic digest spectrum.	. 77
4.1.3. Procedure for labelling (annotating) the peaks in adult haemoglobin digest spectra with symbols representing the α - and β -chain tryptic peptides	. 86
4.1.3.1. Annotating the α -chain tryptic peptides	. 87
4.1.3.2. Annotating the β-chain tryptic peptides	. 91
4.1.4. Summary of the tables devised to assist in searching for variant tryptic peptides	. 96
4.2. Tables to assist in searching for tryptic peptides produced from α-chain variants that differ from normal by 0, ±1, ±3 and ±4 Da	. 97
4.3. Tables to assist in searching for tryptic peptides from α-chain variants that involve Arg or Lys and give a mass change >±6 Da from normal (excluding Arg↔Lys)	103
4.4. Tables to assist in searching for tryptic peptides produced from β -chain variants that differ in mass from normal by 0, ±1, ±3 and ±4 Da	119
4.5. Tables to assist in searching for tryptic peptides from β-chain variants that involve Arg or Lys and give a mass change >±6 Da from normal (excluding Arg↔Lys)	125
4.6. Tables to assist in searching for some tryptic peptides produced from α- and β-chain variants that involve the mutations Xxx↔Asp when adjacent to Lys	141
4.7. Examples of variants in which cleavage by trypsin at Lys is severely hindered by an adjacent Asp	145

4.0. Step 4. Digestion of the haemoglobin in blood with trypsin, nomenclature and the peptides produced in practice

It was shown in Section 2 how analysis of the intact globin chains in abnormal blood samples by ESI-MS gave the mass of the variant chain and hence the mass change of the variant from normal. The variant was also assigned to one of the globin chains by such data. Moreover, with the aid of the genetic code tables, the mass change implied a small number of possible amino acid mutations, but not the position of the mutation in the globin chain. In this section, the haemoglobin (Hb) in diluted blood is denatured and the resulting globin chains digested with trypsin for 30 minutes in order to cut each chain into a number of smaller pieces (tryptic peptides). This mixture of peptides is then analysed by ESI-MS and the resulting spectrum compared with that from a normal sample in order to identify the peptide containing the mutation. In this way, the number of possible positions of the mutation in the globin chain is considerably reduced. It has been found that in roughly half of the samples analysed, only one mutation in the peptide can occur by a single base change in the nucleotide codon, which identifies the variant. In order to identify the variant in peptides containing more than one possible mutation, the variant peptide would need to be sequenced by tandem ESI-MS.

Note that the mixtures of peptides are analysed directly by ESI-MS, i.e. with no prior chromatographic separation. The ESI-mass spectrum from a typical 30-minute tryptic digest of diluted and denatured adult human blood is shown in Figure 4.0.1.

Nomenclature

Trypsin normally cleaves proteins (globin chains in the case of Hb) at the carboxyl or C-terminal (right-hand) side of the amino acid residues arginine (Arg, R) and lysine (Lys, K) except when proline (Pro, P) occurs on the C-terminal side of, and adjacent to, these residues. Tryptic peptides are numbered from the amino or N-terminal (left-hand) end of the globin chain (Figure 4.0.2). For example, α T3 means the third peptide from the N-terminus of the α -chain, and β T5 means the fifth peptide from the N-terminus of the β -chain. β T(10-11) means the tenth and eleventh β -chain peptides joined together.

Tryptic peptides produced in practice: the effect of acidic amino acids

Cleavage is slower when the residues glutamic acid (Glu, E) or aspartic acid (Asp, D) occur close to Arg or Lys. In the context of the normal human Hb α - and β -chains, the rate of cleavage at Lys is drastically reduced when Asp occurs on the N-terminal side of the Lys resulting in the formation of the double peptides $\alpha T(1-2)$, $\alpha T(12-13)$ and $\beta T(10-11)$ as major components. Tables 4.1.1 and 4.1.2 show respectively the tryptic peptides produced from the normal α - and β -chains.

> βT10-11 peptide βT12 peptide --- GTFATLSELHC<u>DK</u>LHVDPENFR LLGNVLVCVLAHHFGK

Figure 4.0.2. Parts of the β -chain sequence illustrating various aspects of cleavage by trypsin. The presence of Asp (D) adjacent to Lys (K), (DK underlined in the above sequence), essentially abolishes cleavage at the Lys to give the β T(10-11) peptide. The β T10 and β T11 peptides are not present at useful levels in 30-minute digests.

4.1. Procedure for digesting the haemoglobin in blood samples with trypsin in order to produce mixtures of peptides suitable for variant identification by electrospray ionization mass spectrometry (ESI-MS)

Objective. To prepare mixtures of tryptic peptides suitable for identifying variants <u>directly</u> from whole blood samples, i.e. without clean-up, dehaeming, derivatisation or separation.

Preparation of the 50-fold diluted blood stock solution.

Pipette 10 μ L of whole blood (generally in EDTA anti-coagulant) into a 1.5 mL microcentrifuge tube and dilute it 50-fold by adding 490 μ L of HPLC grade water.

Preparation of the digest solution.

Transfer 100 μ L of the stock solution to a fresh 1.5 mL microcentrifuge tube.

Denature the haemoglobin (Hb) by adding 20 μ L of denaturing solution. Mix and allow the resulting solution to stand for at least 3 minutes at room temperature (20-25°C).

Then add and mix 6 μ L of 1 molar aqueous ammonium bicarbonate (NH₄HCO₃) solution. The solution should become cloudy, indicating that the haemoglobin has been effectively denatured.

Then add and mix 5 μ L of 5 mg/mL aqueous TPCK treated trypsin solution (Sigma T-1426). Allow the resulting solution to stand at room temperature, when the precipitate should disappear within approximately 2 minutes of adding the trypsin, as indicated by the solution becoming clear.

Incubate the resulting solution at 37°C.

After 30 minutes, dilute the digest solution 10fold by adding 900 μ L of Solution A. The resulting solution may then be introduced into the mass spectrometer for analysis by ESI-MS. It should remain analytically viable for several weeks when refrigerated at ~4°C.

NB. In order to ensure reproducible introduction of the ammonium bicarbonate and trypsin solutions above, it is recommended that they are dispensed from 10 μ L syringes, e.g. Hamilton type 701 with bevel tip. Whilst

dispensing the solutions, touch the inner surface of the sample tube about half-way down with the tip of the syringe.

Over 98% of α and β -chain variants can be identified from 30-min tryptic digests as prepared above. Generally, there is little to be gained from digesting over a longer time for two reasons. First, peptides representing the whole of these chains are already present after 30-minutes. Second, the two large 'double' peptides $\alpha T(12-13)$ and $\beta T(10-11)$ are not significantly cleaved further at α 127Lys and β95Lys, respectively, by prolonged digestion. Furthermore, the Cys containing peptides gradually disappear, presumably because they form disulphide-bonded dimers with one another, and which would then require them to be released by reduction with dithiothreitol. However, there are two types of variant that require a special approach:

First, there are a few variants in which a Cvs is produced by the mutation and the 'new' Cys containing peptide is not observed in the digest solution. For example, the variant α T9 peptide was not observed in the digest from Hb Nigeria, $\alpha 81$ Ser \rightarrow Cys, until the digest solution was reduced. A similar situation was observed with Hb Porto Alegre, β 9Ser \rightarrow Cys. To observe the variant, reduce the digest solution with dithiothreitol before it is acidified with Solution A, i.e. while the pH is still approximately 8. To do this, place 50 µL of the 30-min digest in a fresh 1.5 mL microcentrifuge tube and add 5 µL of 100 mMolar dithiothreitol (DTT) solution. Incubate at 37°C for 15 minutes. Then add 450 µL of Solution A to give the working solution for analysis by ESI-MS.

 $\alpha/(\alpha-1)$ Second, there are four Da) heterozygotes in the α T9 peptide that are very difficult to confirm by tandem MS. A fifth one occurs in the $\alpha T(12-13)$ peptide. These may be from α -chymotrypsin digests identified prepared in exactly the same way as the tryptic digests by simply replacing trypsin with α chymotrypsin (Sigma C-3142).

4.1.1. Preparation of the reagent solutions used in digesting 50-fold diluted blood with trypsin.

The denaturing solution may be prepared in a 1.5 mL microcentrifuge tube by mixing 500 μ L of 1% formic acid with 500 μ L of acetonitrile. Store at 4°C. Replace after 6 weeks.

The 1M ammonium bicarbonate (NH₄HCO₃) solution may be prepared as follows. Accurately weigh out *X* mg (50-100 mg) of ammonium bicarbonate (Sigma A-6141) in a 1.5 mL microcentrifuge tube and add 12.6 *X* μ L of HPLC grade water. This solution should remain viable for several months when stored at 4^oC.

The trypsin solution (5 mg/mL, 0.21 mM) may be prepared as follows. Accurately weigh out *Y* mg (2-3 mg) of TPCK treated trypsin (Sigma T-1426) in a 1.5 mL microcentrifuge tube and dissolve in 200 *Y* μ L of HPLC grade water. This solution should remain viable for at least 3 months when stored at -20°C. Such a solution that had been stored for 5 years at -20°C was found to be fully active.

Solution A, for 10-fold diluting aliquots of the digest solutions, may be prepared by mixing 5 mL of acetonitrile, 2 mL of water and 2 mL of 1% HCOOH or *pro rata*. Store at room temperature.

The 100 mM solution of dithiothreitol (DTT) may be prepared as follows. Accurately weigh out Z mg (5-10 mg) of dithiothreitol (Sigma D-9760) in a 1.5 mL microcentrifuge tube and add 64.8 Z μ L of water. This solution should remain viable for at least 1 month when stored at 4^oC.

ESI-MS analysis.

Many of the parameters for acquiring data from tryptic digests are instrument type dependent. Therefore, it will be necessary to set them when initially setting up the instrument. The following are typical for a Quattro Ultima tandem quadrupole instrument: Select positive ion mode, capillary = 3.0 kV, 32 channels per m/z unit (if available), otherwise use 16 channels. The remaining source and interface parameters are chosen to optimise sensitivity and resolution. For setting up purposes, introduce a 30-min tryptic digest at 5 μ L/min flow rate, and optimise the intensity and resolution of the β T14²⁺ and β T5²⁺ ions at m/z 575.3 and 1,030.0 respectively on the tune page. It is often beneficial to use non-standard LM and HM parameters, e.g. 22 and 14 respectively, in order to obtain a more balanced performance across the m/z range. Collision cell parameters should be set to give maximum sensitivity. Typical settings are: Entrance = 2V, collision cell = 2-5V, Exit = 40V. Scan from m/z 200 to 1,650 is usually adequate. Scan time = 8 sec. Acquisition time = 3 minutes in MCA mode. Internally calibrate i.e. calibrate the m/z scale of each digest spectrum on itself, using reference file DigHbA.ref.

4.1.2. Mass scale calibration of the tryptic digest spectrum.

Open the raw data file.

From Tools, open Make Calibration.

In the **Make new calibration window**, select **Reference file** DigHbA.ref.

Figure 4.1.2.1. Selection of the appropriate calibration file

Press Mass measure to open the Mass Measure window. Select and set the parameters in the Mass Measure window as follows. Select **Background subtract** and set **Polynomial order** to 25 and **Below curve (%)** to 5.00. Select Smooth and set Peak width (Da) (sic, actually m/z) to 0.60 and set Number of smooths to 2. Select Savitsky Golay. Set Min peak width at half height (channels) to 4. Select Centroid top (%) and set it to 50.00. Select heights. Press OK.

Background subtrac	a.	OK
Polynomial order	25	Cancel
Below curve (%)	5.00	
Smooth		
Peak <u>w</u> idth (Da)	0.60	
Number of smooths	2	
^{re} Me <u>a</u> n		
Savitzky <u>G</u> olay		
Min peak width at half height (channels)	4	1
C Iop		
Centroid top (%)	50.00	
Heights C Areas		

Figure 4.1.2.2. Typical parameters for mass measuring digest mass spectra acquired in MCA mode.

The spectrum should then be calibrated in a few seconds and a Calibration Report displayed, which shows how well the mass spectral peaks fit the reference masses. The errors should generally be less than approximately ± 0.02 amu. To remove a peak from the calibration, e.g. a peak that shows excessive error, press the right click the peak with the mouse.

To calibrate subsequent digest spectra, simply open <u>the raw data file</u>, select **Make Calibration** from **Tools** and Press OK from Make new calibration.

Figure 4.1.2.3. Report following the application of the calibration

The concentration of $(\alpha+\beta)$ chains in 50-fold diluted blood is approximately 1.9×10^{-4} M, based on a haemoglobin concentration in blood of 15 g/100 mL. The concentration of trypsin in the digest solution is 8.2 $\times 10^{-6}$ M, giving a trypsin to $(\alpha+\beta)$ chain ratio of 5.8% molar (8.3% by weight).

The following tables show the tryptic peptides together with their masses and m/z values predicted to occur in tryptic digests of various globin chains using the AutoDigest Simulation software. The principal m/z values observed in practice from 30-minute digests are shown underlined:

Table 4.1.1. α -chain peptides, all values are monoisotopic.

Table 4.1.2. β -chain peptides, all values are monoisotopic.

Table 4.1.3, α -chain peptides, values are monoisotopic up to mass 2,200 Da and average above 2,200 Da.

Table 4.1.4. β -chain peptides, values are monoisotopic up to mass 2,200 Da and average above 2,200 Da.

Table 4,.1.5. δ -chain peptides, all values are monoisotopic. See header to table for further information.

Table 4.1.6. γ -chain peptides, all values are monoisotopic. See header to table for further information.

The principal m/z values observed in practice are underlined. $\alpha T12$ and $\alpha T13$ are not observed at useful levels in 30-minute digests. **Table 4.1.1**. The masses and m/z values of peptides predicted to occur in 30-minute tryptic digests of the α -chain. All values are monoisotopic.

Data file: HBA_HUMA.emb, Mon May 29 12:15:18 2006 Description: HEMOGLOBIN ALPHA CHAIN. HOMO SAPIENS (HUMAN), PAN TROGLODYTES (CHIMPANZEE), AND PAN PANISCUS Source: EMBL P01922, 21-JUL-1986 (REL. 01, LAST SEQUENCE UPDATE)

Average Mass = 15126.3807, Monoisotopic Mass = 15116.8851 N-Terminus = H, C-Terminus = OH Digest: Trypsin:/K-\P /R-\P

Mass (Da)

			Mono→Ave				
Frag#	Res#	Seguence	at 4500	[H+H]	[M+2H]	[HE+M]	[M+4H]
T1 -	1-7	(-) VLSPADK (T)	728.41	729.41	365.21	243.81	183.11
Т2	8-11	(K) TNVK (A)	460.26	<u>461.27</u> J	231.14	154.43	116.07
Т3	12-16	(K) AAWGK (V)	531.28	532.29	266.65	178.10	133.83
Τą	17-31	(K) VGAHAGEYGAEALER (M)	1528.73	1529.73	765.37	510.58	383.19
T5	32-40	(R) MFLSFPTTK (T)	1070.55	1071.55	536.28	357.86	268.64
Т6	41-56	(K) TYFPHFDLSHGSAQVK (G)	1832.88	1833.89	917.45	611.97	459.23
т7	57-60	(K) GHGK (K)	397.21	398.22	199.61	133.41	100.31
Т8	61-61	(K) K (V)	146.11	147.11	74.06	49.71	37.53
Т9	62-90	(K) VADALTNAVAHVDDMPNALSALSDLHAHK (L)	2995.48	2996.49	1498.75	999.50	749.88
T10	91-92	(K) LR (V)	287.20	288.20 l	144.61	96.74	72.81
T11	93-99	(R) VDPVNFK (L)	817.43	818.44)	409.72∫	273.49	205.37
T12	100-127	(K) LLSHCLLVTLAAHLPAEFTPAVHASLDK (F)	2966.61	2967.61	1484.31	989.88 J	742.661
T13	128-139	(K) FLASUSTVLTSK (Y)	1251.71	1252.72	626.86J	418.24 J	313.93 J
T14	140-141	(K) YR (–)	337.18	338.18	169.60	113.40	85.30
T1-2	1-11	(-) VLSPADKTNVK (A)	1170.66	1171.67	586.34	391.23	293.67
T2-3	8-16	(K) TNVKAAWGK (V)	973.53	974.54	487.78	325.52	244.39
T3-4	12-31	(K) AAWGKVGAHAGEYGAEALER (M)	2042.00	2043.00	1022.01	681.67	511.51
T4-5	17-40	(K) VGAHAGEYGAEALERMFLSFPTTK (T)	2581.26	2582.27	1291.64	861.43	646.32
T5-6	32-56	(R) MFLSFPTTKTYFPHFDLSHGSAQVK (G)	2885.42	2886.43	1443.72	962.81	722.36
T6-7	41-60	(K) TYFPHFDLSHGSAQVKGHGK (K)	2212.08	2213.09	1107.05	738.37	554.03
T7-8	57-61	(K) GHGKK (V)	525.30	526.31	263.66	176.11	132.33
T8-9	61-90	(K) KVADALTNAVAHVDDMPNALSALSDLHAHK (L)	3123.58	3124.58	1562.80	1042.20	781.90
T9-10	62-92	(K) VADALTNAVAHVDDMPNALSALSDLHAHKLR (V)	3264.67	3265.68	1633.34	1089.23	817.17
T10-11	91-99	(K) LRVDPVNFK (L)	1086.62	1087.63	544.32	363.21	272.66
T11-12	93-127	(R) VDPVNFKLLSHCLLVTLAAHLPAEFTPAVHAS	3766.03	3767.04	1884.02	1256.35	942.51
		LDK (F)					
T12-13	100-139	(K) LLSHCLLVTLAAHLPAEFTPAVHASLDKFLAS	4200.30	4201.31	2101.16	1401.11	1051.08
		VSTVLTSK (Y)				T12-13 5+	= <u>841.60</u>
T13-14	128-141	(K) FLASVSTVLTSKYR (–)	1570.87	1571.88	786.44	524.63	393.73

The principal m/z values observed in practice are underlined. β T10 and β T11 are not observed at useful levels in 30-minute digests. The masses and m/z values of peptides predicted to occur in 30-minute trypic digests of the β -chain. All values are monoisotopic. **Table 4.1.2.**

HOMO SAPIENS (HUMAN), PAN TROGLODYTES (CHIMPANZEE), AND PAN PANISCUS Description: HEMOGLOBIN BETA CHAIN. HOMO SAPIENS (HUMAN), PAN TROGL Source: EMBL P02023, 21-JUL-1986 (REL. 01, LAST SEQUENCE UPDATE) HBB_HUMA.emb, Mon May 29 12:02:11 2006 Data file:

Average Mass = 15867.2406, Monoisotopic Mass = 15857.2497 N-Terminus = H, C-Terminus = OH Discott memodia./K-ND /D-ND 233.89

238.88

[M+4H]

329.42

319.44

515.49

62.30 103.81 37.53 418.23

356.17 282.40 430.75 345.43

288.17 80.54 467.26 557.80

643.35

829.42

572.28 160.60 135.84 <u>633.06</u> 707.64

450.25 768.89 770.67 628.10 363.21

Didest - T	s = n, C-ler runsin / K-/ D	$A = \sqrt{R}$	Mass (Da)			
	-\ .:/:		Mono→Ave			
Frag#	Res#	Sequence	at 4500	[H+H]	[M+2H]	+ M]
T1 -	1-8	(-) VHLTPEEK (S)	951.50	952.51	476.76	318
Т2	9-17	(K) SAVTALWGK (V)	931.51	932.52	466.76	311
Т3	18-30	(K) VNVDEVGGEALGR (L)	1313.66	1314.67	657.84	438
T4	31-40	(R) LLVVYPWTQR(F)	1273.72	1274.73	637.87	425
T5	41-59	(R) FFESFGDLSTPDAVMGNPK(V)	2057.94	2058.95	1029.98	686
Т6	60-61	(K) VK (A)	245.17	246.18	123.59	82
Т7	62-65	(K) AHGK (K)	411.22	412.23	206.62	138
Т8	66-66	(K) K (V)	146.11	147.11	74.06	49
Т9	67-82	(K) VLGAFSDGLAHLDNLK (G)	1668.88	1669.89	835.45	557
T10	83-95	(K) GTFATLSELH <u>CDK</u> (L)	1420.67	1421.67	711.34	474
T11	96-104	(K) $LHVDPENFR(L)$	1125.56	1126.565	563.791	376
T12	105-120	(R) LLGNVLVCVLAHHFGK (E)	1718.97	1719.97	860.49	574
T13	121-132	(K) EFTPPVQAAYQK (V)	1377.69	1378.70	689.85	460
T14	133-144	(K) VVAGVANALAHK (Y)	1148.67	1149.67	575.34	383
T15	145-146	(K) YH (-)	318.13	319.14	160.07	107
T1-2	1-17	(-) VHLTPEEKSAVTALWGK (V)	1865.00	1866.01	933.51	622
T2-3	9-30	(K) SAVTALWGKVNVDEVGGEALGR (L)	2227.16	2228.17	1114.59	743
T3-4	18 - 40	(K) VNVDEVGGEALGRLLVVYPWTQR (F)	2569.37	2570.37	1285.69	857
T4-5	31-59	(R) LLVVYPWTQRFFESFGDLSTPDAVMGNPK (V)	3313.65	3314.66	1657.83	1105
T5-6	41-61	(R) FFESFGDLSTPDAVMGNPKVK (A)	2285.10	2286.11	1143.56	762
T6-7	60-65	(K) VKAHGK (K)	638.39	639.39	320.20	213
T7-8	62-66	(K) AHGKK (V)	539.32	540.33	270.67	180
T8-9	66-82	(K) KVLGAFSDGLAHLDNLK (G)	1796.98	1797.99	899.50	600
T9-10	67-95	(K) VLGAFSDGLAHLDNLKGTFATLSELHCDK(L)	3071.54	3072.55	1536.78	1024
T10-11	83-104	(K) GTFATLSELHCDKLHVDPENFR (L)	2528.21	2529.22	1265.11	843
T11-12	96-120	(K) LHVDPENFRLLGNVLV <u>C</u> VLAHHFGK (E)	2826.51	2827.52	1414.26	943
T12-13	105-132	(R) LLGNVLVCVLAHHFGKEFTPPVQAAYQK (V)	3078.65	3079.66	1540.33	1027
T13-14	121-144	(K) EFT PPVQAAYQKVVAGVANALAHK (Y)	2508.35	2509.36	1255.18	837
T14-15	133-146	(K) VVAGVANALAHKYH (-)	1448.79	1449.80	725.40	483

2,200 Da and average above 2,200 Da. The principal m/z values observed in practice are underlined. α T12 and α T13 are not observed at useful levels in 30-min digests. The masses and m/z values of peptides predicted to occur in 30-minute tryptic digests of the α -chain. Values are monoisotopic up to mass **Table 4.1.3.**

Data file: HBA_HUMA.emb, Mon May 29 12:11:56 2006 Description: HEMOCLOBIN ALPHA CHAIN. HOMO SAPIENS (HUMAN), PAN TROGLODYTES (CHIMPANZEE), AND PAN PANISCUS Source: EMBL P01922, 21-JUL-1986 (REL. 01, LAST SEQUENCE UPDATE)

Average Mass = 15126.3807, Monoisotopic Mass = 15116.8851 N-Terminus = H, C-Terminus = OH Digest: Trypsin:/K-\P /R-\P

Mass (Da)

			Mono→Ave				
Frad#	Res#	Sequence	at 2200	[H+H]	[M+2H]	[H+3H]	[M+4H]
T1	1-7	(-) VLSPADK (T)	728.41	729.41	365.21	243.81	183.11
т2	8-11	(K) TNVK (\overline{A})	460.26	461.27	231.14	154.43	116.07
T3	12-16	(K) AAWGK (V)	531.28	532.29	266.65	178.10	133.83
T4	17-31	(K) VGAHAGEYGAEALER (M)	1528.73	1529.73	765.37	510.58	383.19
T5	32-40	(R) MFLSFPTTK (T)	1070.55	1071.55	536.28	357.86	268.64
Т6	41-56	(K) TYFPHFDLSHGSAQVK (G)	1832.88	1833.89	917.45	611.97	459.23
T7	57-60	(K) GHGK (K)	397.21	398.22	199.61	133.41	100.31
T8	61-61	(K) K (V)	146.11	147.11	74.06	49.71	37.53
Т9	62-90	(K) VADALTNAVAHVDDMPNALSALSDLHAHK (L)	2997.34	2998.35	1499.68	1000.12	750.34
T10	91-92	(K) LR (V)	287.20	288.20l	144.61	96.74	72.81
T11	93-99	(R) VDPVNFK (L)	817.43	818.44	409.72 J	273.49	205.37
T12	100-127	(K) LLSHCLLVTLAAHLPAEFTPAVHASLDK(F)	2968.51	2969.52	1485.27	990.51 J	743.14]
T13	128-139	(K) FLASVSTVLTSK (Y)	1251.71	1252.72	626.861	418.24J	313.93 J
T14	140-141	(K) YR (–)	337.18	338.18	169.60	113.40	85.30
T1-2	1-11	(-) VLSPADKTNVK (A)	1170.66	1171.67	586.34	391.23	293.67
T2-3	8-16	(K) TNVKAAWGK (V)	973.53	974.54	487.78	325.52	244.39
T3-4	12-31	(K) AAWGKVGAHAGEYGAEALER (M)	2042.00	2043.00	1022.01	681.67	511.51
T4-5	17 - 40	(K) VGAHAGEYGAEALERMFLSFPTTK (T)	2582.92	2583.93	1292.47	861.98	646.74
T5-6	32-56	(R) MFLSFPTTKTYFPHFDLSHGSAQVK (G)	2887.31	2888.32	1444.66	963.45	722.84
T6-7	41-60	(K) TYFPHFDLSHGSAQVKGHGK (K)	2213.44	2214.45	1107.73	738.82	554.37
T7-8	57-61	(K) GHGKK (V)	525.30	526.31	263.66	176.11	132.33
T8-9	61-90	(K) KVADALTNAVAHVDDMPNALSALSDLHAHK (L)	3125.51	3126.52	1563.76	1042.85	782.39
T9-10	62-92	(K) VADALTNAVAHVDDMPNALSALSDLHAHKLR (V)	3266.69	3267.70	1634.35	1089.90	817.68
T10-11	91-99	(K) LRVDPVNFK (L)	1086.62	1087.63	544.32	363.21	272.66
T11-12	93-127	(R) VDPVNFKLLSHCLLVTLAAHLPAEFTPAVHAS	3768.44	3769.45	1885.23	1257.15	943.12
		LDK (F)					
T12-13	100-139	(K) LLSHCLLVTLAAHLPAEFTPAVHASL <u>DK</u> FLAS vsrvrrsk(Y)	4202.97	4203.98	2102.49	1402.00	1051.75
T13-14	128-141	(K) FLASVSTVLTSKYR(-)	1570.87	1571.88	786.44	524.63	393.73

Table 4.1.4.	The masses ar 2,200 Da and 1seful levels ii	nd m/z values of peptides predicted to occur in 30-m average above 2,200 Da. The principal m/z values n 30-min digests.	uinute tryptic o observed in I	ligests of the sractice are u	β-chain . Val nderlined. βT	lues are mon 10 and βT11	visotopic up to mass are not observed at
Data file: Description Source:	HBB HUMA HEMOGLOB EMBL P02	.emb, Mon May 29 12:06:36 2006 IN BETA CHAIN. HOMO SAPIENS (HUMAN), I 023, 21-JUL-1986 (REL. 01, LAST SEQUENCE	PAN TROGLOD E UPDATE)	YTES (CHIM	(PANZEE), A	ND PAN PAN	scus
Average Mas	s = 15867.	2406, Monoisotopic Mass = 15857.2497					
N-Terminus Digest: Try	= H, C-Ter psin:/K-\P	minus = OH /R-\P	Mass (Da) Mono→Ave				
Frag#	Res#	Sequence	at2200	[H+H]	[M+2H]	[M+3H]	[M+4H]
T1 Č	1-8	(-) VHLTPEEK(S)	951.50	952.51	476.76	318.18	238.88
Т2	9-17	(K) SAVTALWGK (V)	931.51	<u>932.52</u>	466.76	311.51	233.89
Т3	18-30	(K) VNVDEVGGEALGR (L)	1313.66	1314.67	657.84	438.89	329.42
T4	31-40	(R) LLVVYPWTQR (F)	1273.72	1274.73	<u>637.87</u>	425.58	319.44
15 1	41-59	(R) FFESFGDLSTPDAVMGNPK(V)	2057.94	2028.95	1029.98	686.49 01 12	515.49
9 L E	19-09	(K) VK (A)	/1.042	240.18 112 23	123.39 206 62	82./3 130 00	62.3U 103 81
1 / T8	66-66 66-66	(V) ANGR (V) (K) K (V)	146.11	$\frac{147.11}{147.11}$	74.06	49.71	37.53
6L	67-82	(K) VLGAFSDGLAHLDNLK (G)	1668.88	1669.89	835.45	557.30	418.23
T10	83-95	(K) GTFATLSELH <u>CDK</u> (L)	1420.67	1421.67	711.34}	474.56	356.17
T11	96-104	(K) LHVDPENFR (L)	1125.56	<u>1126.56</u>	563.791	376.191	282.40
T12	101-120	(Κ) ΔΔGNVLVCVLAHHEGK (Ε) γκ) ετποριγοδάγοκ (γ)	1477 69/	1378 70	860.49 689 85	460 24	430.72 345 43
T14	133-144	(K) VVAGVANALAHK (Y)	1148.67	1149.67	575.34	383.90	288.17
T15	145-146	(K) YH (-)	318.13	319.14	160.07	107.05	80.54
T1-2	1-17	(-) VHLTPEEKSAVTALWGK (V)	1865.00	1866.01	933.51	622.68	467.26
T2-3 T3-4	9-30 18-40	(K) SAVTALWGKVNVDEVGGEALGR (L) /K) VNVDEVGGFA1.GPLI.VVVPWTOR (F)	2228.49 2570 93	2229.5U 2571 94	1286.47	/43.84 857.99	643.74
14-5 T4-5	31-59	(R) LLVVYPWTQRFFESFGDLSTPDAVMGNPK (V)	3315.80	3316.81	1658.91	1106.27	829.96
T5-6	41-61	(R) FFESFGDLSTPDAVMGNPKVK (A)	2286.59	2287.60	1144.30	763.21	572.66
T6-7	60-65	(K) VKAHGK (K)	638.39	639.39	320.20	213.80	160.60
T7-8	62-66	(K) AHGKK (V)	539.32	540.33	270.67	180.78	135.84
T8-9	66-82 65 65	(K) KVLGAFSDGLAHLDNLK (G)	1796.98	1797.99	899.50		450.25
	26-/9 701-00	(Κ) ΥΔGAFSUGLAHLUNLKGTFATLSELHCUK (L)	30/3.48 2520 82	30/4.49 2520 82	1765 07	0C.C2U1	109.30 633 16
T11-12	96-120	(K) LHVDPENFRLLGNVLVCVLAHHFGK (E)	2828.34	2829.35	1415.18	943.79	708.09
T12-13	105-132	(R) LLGNVLVCVLAHHFGKEFTPPVQAAYQK (V)	3080.65	3081.66	1541.33	1027.89	771.17
T13-14 T14-15	121-144 133-146	(Κ) ΕΓΤΡΡΥΟΔΑΥΟΚΥΥΑGVANALAHK (Υ) (Κ) υνασυαΝαΓαΗΚΥΗ (–)	2509.89 1448.79	2510.90 1449.80	1255.95 725.40	837.64 483.94	628.48 363.21
)	> 1 1)) 1))) ·) · · · · ·)	• • • • • • •	11.000

underlines denote observable species differing from β-chain species. Broken underlines denote δ-chain species likely present but masked by β-The masses and *m/z* values of peptides predicted to occur in 30-minute tryptic digests of the **∂-chain**. All values are **monoisotopic**. Solid chain species. **Table 4.1.5.**

01, LAST SEQUENCE UPDATE), 01-JUN-1994 (REL. 29, LAST ANNOTATION UPDATE) SAPIENS (HUMAN). OMOH (REL. EMBL P02042, 21-JUL-1986 Mon Sep 08 12:59:24 2008 HEMOGLOBIN DELTA CHAIN. HBD HUMA. emb Description: Data file: Printed: Source:

Average Mass = 15924.3170, Monoisotopic Mass = 15914.2494 N-Terminus = H, C-Terminus = OH Digest: Trypsin:/K-\P /R-\P

Mass (Da)

255.75 409.79

252.14

50.04 83.25 30.23 334.78 293.74 226.12

254.76 93.86 289.14 230.74 64.63 440.24

379.41

191.31

M+5H

318.20 238.88 240.64 62.30 366.931 628.85 825.92 79.64 319.44 103.81 37.53 282.40 80.54 L60.60 L35.84 150.25 550.05 314.92 418.23 568.78 129.76 472.73 643.84 511.99 17.07 361.18 288.17 474.01 .95**.**09 M+4H] 643.81 363.27 $\begin{array}{c} 49.71\\ 557.30\\ \overline{557.90}\\ \overline{376.90}\\ \overline{376.19}\\ \overline{423.93}\\ 155.75\end{array}$ 318.18 320.52 419.56 425.58 682.32 82.73 138.08 107.05 631.68 838.13 1100.89 600.001039.19383.90 733.06 758.04 481.23 213.80 572.67 858.12 180.78 858.08 483.94 M+3H] 629.97 93.11 $\left. \frac{835.45}{732.84} \right. \\ \left. \frac{732.84}{563.79} \right. \\ \left. \frac{535.39}{39} \right. \right. \\ \left. \frac{1}{39} \right. \\ \left. \frac{1}{39}$ 899.50 558.28 206.62 74.06 947.02 1256.69 1650.82 476.76 480.27 637.87 1022.97 $\frac{575.34}{160.07}$.099.09 .136.55 320.20 270.67 858.50 725.40 721.34 189.16944.46 233.13 286.62 286.67 [M+2H] 628.83 952.51 959.53 $\frac{246.18}{412.23}$ $\frac{147.11}{147.11}$ 1669.89 1464.68 1126.56 $\frac{11149.67}{319.14}$ 1893.02 $\frac{1797.99}{3115.55}$ $\frac{1274.73}{2044.93}$ 2272.10 639.39 .716.00 1887.91 2572.33 1449.80 465.25 .441.68 2197.17 2512.37 3300.64 540.33 2572.23 2377.32 [H+H] 256.66 Mono→Ave 951.50 958.52 2571.33 1448.79 318.13 2571.22 2376.31 411.22 .668.88 .268.76 2196.17 2511.36 2271.09 638.39 714.99 273.72 463.67 .125.56 464.24 1148.67 L892.02 3299.63 539.32 1796.98 3114.54 at4500 255.65 1440.67.886.90 2043.92 245.17 146.11 R) LLVVYPWTQRFFESFGDLSSPDAVMGNPK (V) (K) VLGAFSDGLAHLDNLKGTFSQLSELHCDK(L) (K) EFTPQMQAAYQKVVAGVANALAHK (Y) K) VNVDAVGGEALGRLLVVYPWTQR(F) K) TAVNALWGKVNVDAVGGEALGR (L) (K) GTFSQLSELHCDKLHVDPENFR(L) K) LHVDPENFRLLGNVLVCVLAR (N) (R) FFESFGDLSSPDAVMGNPKVK (A) (R) FFESFGDLSSPDAVMGNPK (V) % (K) KVLGAFSDGLAHLDNLK (G) (-) VHLTPEEKTAVNALWGK(V) % (K) VLGAFSDGLAHLDNLK (G) R) LLGNVLVCVLARNFGK (E) R) NEGKEFTPOMOAAYOK (V) * (K) VVAGVANALAHKYH (-) (K) VNVDAVGGEALGR (L) (K) GTFSQLSELHCDK (L) (R) LLGNVLVCVLAR (N) (K) EFT PQMQAAYQK (V) * (K) VVAGVANALAHK (Y) * (R) LLVVYPWTQR (F) (K) TAVNALWGK (V) * (K) LHVDPENFR (L) * (~) VHLTPEEK(T) KK) VKAHGK (K) % (K) AHGKK (V) ***** (K) VK (A) ***** (K) AHGK (K) R) NFGK (E) Sequence * (K) YH (-) **%** (K) K (V) 31-40 62-65 67-82 83-95 Res# 1-8 145-146 9-30 41-59 66-66 96-104 105 - 116117-120 133-144 1-17 31-59 60-65 62-66 105-120 133-146 9-17 18 - 30121-132 18 - 4066-82 67-95 83-104 96-116 .17-132 21-144 60 - 6141-61 T10-11 r15-16 T11-12 T12-13 T13-14 r14-15 19-10 Erag# T1-2 T2-3 T3-4 T4-5 T5-6 T6-7 T8-9 T7-8 T15 T16 T12 T13 T14 T10T11T4 $\mathbf{T5}$ 9 E 138 1

Note: Although $\delta T(10-11)$ and $\delta T(14-15)$ have essentially the same mass, he latter is unlikely to be present.

128.69 108.87

503.28

660.93 455.23 623.92 515.25

344.01 378.39

515.27 290.77

476.27

360.40

*

4.1.3. Procedure for labelling (annotating) the peaks in adult haemoglobin digest spectra with symbols representing the α - and β -chain tryptic peptides

Introduction.

As part of the procedure for identifying variants, diluted haemoglobin samples are digested with trypsin to produce mixtures of tryptic peptides, which are analysed by ESI-MS. In each of the resulting spectra, normally acquired over the m/z range 200-1,650, there are 15 α - and 15 β -chain tryptic peptides, as shown in Tables 4.1.1. and 4.1.2., respectively. The ultimate objective is to identify the peptide containing the variant and hence identify the variant.

The following describes a procedure that assigns the tryptic peptides to peaks in a given digest spectrum, thus acting as an aid towards identifying the variant.

Procedure.

First, make a **centered** spectrum of the digest file to which the tryptic peptides are to be assigned, as follows. This spectrum is assumed to be raw MCA data that has not already been centered as shown in Figure 4.1.2.3. Open the digest spectrum file and display the default m/z range.

Select **Process, Subtract.** Set **Polynomial order** to 25, **Below curve** (%) to 5 and **Tolerance** to 0.01.

Figure 4.1.3.1. Typical parameters for background subtracting mass spectra

Select **Process**, **Smooth**. Set **Peak width (Da)** to 0.5 and **Number of smooths** to 1. Select **Savitzky Golay**.

pectrum Smooth		
Peak <u>w</u> idth (Da)	0.50	ØК
Number of smooths	1	Cancel
-Smoothing method -	-	1
⊂ <u>M</u> ean		
C Median		
🕞 Savitzky Golay		

Figure 4.1.3.2. Typical parameters for smoothing digest mass spectra acquired in MCA mode.

Select Process, Spectrum Center. Set Min peak width at half height (channels) to 1. Set Centroid top (%) to 50. Check the Create centered spectrum box. Select Heights and Replace.

Center method		OK.
Min geak width at half height (channels)	1	Cancel
C Tob		
🔶 Centroid top (%)	50.00	
C Median		
Centered spectrum		
Create centered	L	
spectrum	Add	
• Heights	New window	
C Areas	· Replace	

Figure 4.1.3.3. Typical parameters for peak centering mass spectra

This is the centered spectrum to which the tryptic peptides will be assigned.

4.1.3.1. Annotating the α -chain tryptic peptides.

From **BioLynx** and the **Protein/Peptide Editor**: import the EMBL α -chain (HBA_HUMA.emb).

Look in:	pepembl	- + 🗈 🗗 📰	-
Name	*	Date modified	Т
HBA_HU	JMA.emb	12/09/1997 18:4	1 El
HBAZ_H	IUM.emb	12/09/1997 19:4	6 El
HBB_HU	JMA.emb	12/09/1997 18:4	2 EI
HBD_H	JMA.emb	12/09/1997 18:4	6 El
HBE_HU	IMA.emb	12/09/1997 18:4	6 EI
*	111		¥
File name:	HBA_HUMA	0	pen
Files of type:	EMBL Data (*.emb)	✓ Ca	incel

Figure 4.1.3.4. Select the α -chain from Import.

This will show the single letter amino acid sequence of the human α -chain:

Figure 4.1.3.5. The sequence of the α -chain.

Select Primary, Auto Digest Simulation.

Digest Parameters	Display
Sort Sort Chymotrypsin Mass LysC Mass S Aureus pH 4 B+B AspN B+B Clostripain HPLC Hydroxylamine Mass Create Edit Delete Ion Mode Mass Type Ion Mode Monoisotopic to Average © ES+ C TOF+ above 4500 Da	Multiply-charged series: Erom 1 Iα I I Highlight selected fragment in sequence Window Match Spectrum Parameters I Match spectrum Match Annotation label prefix: a Add to egisting annotation I I Display matching digest fragment ions. Δpply charge filter
Digest Specificity Number of missed cleavage sites: 1 I Display complete and partial fragments	Associated Data File Data File: DIGEST_EXAMPLE_1 Browse Function: Scan (200:1650) ES+ History: Center 1 (Cen.1.50.00, Ht)

Figure 4.1.3.6. Parameters required for annotating the α -chain tryptic peptides.

Set **Digest Parameters** to **Trypsin**, **Sort** Nt→Ct. Set **Monoisotopic to Average above** to 4,500 Da.

Set Number of missed cleavage sites: to 1, and check Display complete and partial fragments.

Set Multiply-charged series From 1 To 4 and check Highlight selected fragment in sequence window.

Check Match Spectrum.

Set Annotation label prefix to a (for α).

Check **Display matching digest fragment ions**.

Press Match. Set Mass window (amu) to ±0.20 and Spectrum Threshold to 1% Full Scale.

Mass Window	ОК
Mass window ±: 0.20 (amu)	Cancel
Spectrum Threshold	5
€ %Eull Scale 1.00	
C Intensity 0	

Figure 4.1.3.7. Recommended parameters for peak matching.

Press **Browse** to confirm the currently active spectrum.

File <u>N</u> ame:		Directories:				
DIGEST_EXAM	IPLE_1.BAW	C:\MassLynx\Hb_Project.pro\Data\				
DIGEST EXAMPLE 1 raw DIGEST EXAMPLE_2.raw HB_NORM.RAW		H ⊂ Intel MassLynx MassLynx G MassLynx Caplc Caplc Default.pro Hb_Project.pro M ⊂ Acqudb Curvedb Curvedb ⊂ Data Curvedb ⊂ Data Curvedb ⊂ Data				
Information		Drives:	etwork			
Sample Description:	DIGEST EXAMPLE 1					
Acquired:	14-May-2011 10:57:27					
Eunction:	Scan (200:1650) ES+	*				
	Raw Data History Es	speriment Dejete	OK Cancel			

Figure 4.1.3.8. Ensures that the spectrum to be annotated is selected.

Select History and select Center Spectrum.

1	y:
Raw Data	1 (25 5 00 (2010) (95 See) († 14 5) 1956 - 14 Sey († 26 See) († 14 3)
1: None 29	Aug-14 15:41
Sample :	DIGEST EXAMPLE 1
Function :	Scan (200:1650) ES+
	Raw Data Subtract 1 (25.5.00, 0.010)

Figure 4.1.3.9. Select the Centered spectrum from History.

Press **OK** three times to annotate the spectrum and return a page of α -chain tryptic peptides.

🥦 Proteins -	HBA_HUMA.emb	- [Digest Fragment List]					- 0	x
🎒 <u>F</u> ile <u>E</u> d	lit <u>D</u> isplay Se <u>a</u> r	ch <u>P</u> rimary <u>S</u> econdary <u>W</u> in	dow <u>H</u> elp				- 6	F ×
🖻 🕑	A d 📾	🛅 14 🔶 🔶 허 A S-S	🕼 सर 📰					
HEMOGLOB		HOMO SAPIENS (HUMAN) PA						*
Associated	Datafile: DIGEST	EXAMPLE 1 (200 - 1650 amu)						
Trypsin:/K-\	P/R-\P							
Frag#	Res#	Sequence	Theor (Bo)	[M+H]	[M+2H]	[M+3H]	[M+4H]	
•11	1-7	(-) VLSPADK (T)	728.41	729.41	365.21	243.81	183.11	
12	8-11	(K) TNVK (A)	460.26	461.27	231.14	154.43	116.07	
13	12-16	(K) AAWGK (V)	531.28	532.29	200.05	1/8.10	133.83	
14	17-31	(R) VGAHAGEIGAEALER (M)	1526.73	1021 55	/05.3/	510.58	363.19	
15	32-40	(R) MELSEPTIK (T)	1070.55	1071.55	017.45	557.00	200.04	
10	41-56	(K) TIPPHPDLSHGSAUVK (G)	1032.00	1033.09	917.45	122 41	409.20	
1/	0/-0U		397.21	390.22	199.01	100.41	27 52	
10	61-61		140.11	147.11	1400 75	49.71	37.03	
19	62-90	(K) VADALINAVAHVDDMPN	2995.40	2990.49	1490.75	999.00	/49.00	
710	01 02	ALSALSDLIARK (L)	297.20	200 20	144 61	06 74	72 01	
T11	91-92		207.20	200.20	409.72	272 40	205 27	
T12	100 127		2066 61	2067 61	1404 21	2/3.45	203.37	
112	100-127	(K) LESICEEVIEAAIEPAE	2900.01	2907.01	1404.31	909.00	/42.00	
T12	129 120		1051 71	1252 72	626.06	419 24	212 02	
T14	140 141	(K) PLASVSIVEISK(I)	227.10	220 10	160.60	112 40	313.93	
114 T1_2	140-141	(K) IK (-)	1170 66	1171 67	109.00	201 22	202 67	
T2 2	0.16		072 52	074 54	407 70	225 52	293.07	
12-5	12-21	(K) INVEAMOR (V)	2042 00	2042.00	1022 01	525.52	244.35	
15-4	12-51	(K) AAWGKVGARAGEIGAEA	2042.00	2043.00	1022.01	001.0/	511.51	
T4 5	17.40	LER (P)	2591 26	2502.27	1201 64	961 42	646 22	
14-5	17-40	(K) VGARAGEIGAEALERPIE	2501.20	2302.27	1291.04	001.45	040.32	
TE C	22.56	DIMELSEPTIK(I)	2005 42	2006 12	1442 72	0.62 01	722.26	
13-6	32-36	(R) HE LSEFTIKITEFHEDL	2003.42	2000.43	1443.72	902.01	/22.30	
76.7	41-60	(ID TVERHED L SHCSADARC	2212 09	2212 00	1107 05	720 27	554 02	
10-7	41-00	(K) TIPPHPDESHOSAQVKO	2212.00	2213.09	1107.05	/30.3/	554.05	
T7_0	57-61	(E) CHCETE O.D	525 20	E26 21	262 66	176 11	100.00	
17-0	57-61		323.30	2124 59	203.00	1042.20	791 00	
10-9	61-90	(K) KVADALINAVAHVDDMP	3123.56	3124.30	1302.00	1042.20	/61.90	
TO 10	62.02	INALSALSDERARK (L)	2264 67	2265 60	1.633.34	1000 00	017 17	
19-10	02-92	ALCALCOLHANDING AND	3204.0/	5205.00	1033.34	1009.23	01/.1/	
T10-11	01_00		1096 63	1097 69	E44 22	262 21	272 66	
T11_12	91-99		3766 02	3767 04	1994.02	1256 35	2/2.00	
111-12	55-127		3766.03	5/6/.04	1004.02	1230.33	542.01	
T12_13	100-139	(E) I SHCI I MULASLUK (E)	4200.20	4201 21	2101 16	1401 11	1051 09	
112-13	100-138	PEDALARA CIDERIA CUCAN	4200.30	4201.31	2101.10	1401.11	1031.06	
		TSVINSBORE LASVSIVE						
		ISR(1)						-
•								•
						irag 1 of 27	Chain 1	of 1
						ragit of 27	Chain 1	011

Figure 4.1.3.10. The full list of α -chain tryptic peptides.

All the α -chain tryptic peptides should now be annotated, as shown in Figure 4.1.3.11.

4.1.3.2. Annotating the β -chain tryptic peptides.

The procedure is the same as that described for the α -chain, with the following exceptions: From **BioLynx** and the **Protein/Peptide Editor**: import the EMBL β -chain (HBB_HUMA.emb).

Look in: 🚺	pepembl	- + 🗈 💣 📰	•
Name	*	Date modified	т
HBA_HU	IMA.emb	12/09/1997 18:41	E
HBAZ_H	IUM.emb	12/09/1997 19:46	5 E
HBB_HU	MA.emb	12/09/1997 18:42	2 E
HBD_HU	IMA.emb	12/09/1997 18:40	5 E
HBE_HU	MA.emb	12/09/1997 18:40	5 E
*	-111		•
File name:	HBB_HUMA	Q	en
Files of type:	EMBL Data (*.emb)	→ Car	ncel

Figure 4.1.3.12. Select the β -chain from Import.

This will show the single letter amino acid sequence of the human β -chain:

Proteins - HBB_HUMA.emb - [Sequence]	
Eile Edit Display Search Primary Secondary Window Help	_ & ×
😂 💮 🔜 🙇 🖎 🛍 l i 🗧 🔶 🗲 🗎 🖪 🚍 🚍	
HEMOGLOBIN BETA CHAIN. HOMO SAPIENS (HUMAN), PAN TROGLODYTES (CHIMPANZEE), A Average Mass = 15867.2406, Monoisotopic Mass = 15857.2497 N-Terminus = H, C-Terminus = OH	ND PAN PANISCUS
1 VHLTP EEKSA VTALW GKVNV DEVGG EALGR LLVVY PWTQR FFESF GDLST PDAVM GNP	KV KAHGK KVLGA FSDGL
76 AHLDN LKGTF ATLSE LHCDK LHVDP ENFRL LGNVL VCVLA HHFGK EFTPP VQAAY QKV	VA GVANA LAHKY H
	Chain 1 of 1

Figure 4.1.3.13. The sequence of the β -chain.

Select Primary, Auto Digest Simulation.

Algest Parameters	Display
Typesin Soft Chymostypsin Soft LysC Mass. S.Aureus pH 4 F S.Aureus pH 8 F AspN P Clostripain P Hydroxylamine P Dreate Edit Delete Ion Mode Mass Type Ion Mode Monoisotopic to Average Es. < TOF+	Multiply-charged series: From 1 Io 4 I✓ Highlight selected fragment in sequence Window Match Spectrum Match I✓ Match spectrum Match Annotation label prefix: b I✓ Display matching digest fragment ions. I✓ Apply charge filter
Digest Specificity Number of missed cleavage sites: 1 Display complete and partial fragments	Associated Data File Data File Eucetion: History:

Figure 4.1.3.14. Parameters required for annotating the β -chain tryptic peptides.

Set Annotation label prefix to 'b' (for β).

Press **Browse**, when the currently active spectrum should be highlighted.

File <u>N</u> ame:		Directories:	
DIGEST_EXAM	IPLE_1.RAW	C:\MassLynx\Hb_Project.pro\Data\	£
DIGEST EXAM DIGEST_EXAM HB_NORM.RA	/PLE_1naw APLE_2.raw W	Intel MassLynx BioAnalysis.pro Ficalc Default.pro Hb_Project.pro Acqudb Curvedb Curvedb C Data Acchive	Ē
Information		Driges:	<u>N</u> etwork
Sample Description:	DIGEST EXAMPLE 1		
Acquired:	14-May-2011 10:57:27		
Eunction:	Scan (200:1650) ES+	-	
	Raw Data		ок

Figure 4.1.3.15. Ensures that the spectrum to be annotated is selected.

Select History and select Center Spectrum.

Flucess Histo	y:
Raw Data 4: Cente 1: None 29	1 (255 too (amit): 055 ee 14 14 51 1956 - Lei Tari, 1955 ee 14 14 51 11 (Cent, 1. Sout): H) 105-Sep 14 14 51 (Saved): Aug-14 15:41
Information Sample :	DIGEST EXAMPLE 1
Function :	Scan (200:1650) ES+
	Raw Data

Figure 4.1.3.16. Select the Centered spectrum from the History.

Press OK twice to return to the Auto Digest Simulation page.

Digest Parameters	Display
Myssin Solution Chymotrypsin Solution Chymotrypsin Solution S Aureus pH 4 E S Aureus pH 8 Solution AspN Distripain Hydroxylamine F Oreate Edit Delete Ion Mode Mass Type Ion Mode Monoisolopic to Average Ion Mode above 4500 Da	Multiply-charged series: From 1 Ior 4 IIF Highlight selected fragment in sequence Window Match Spectrum Match IIF Match spectrum Match Annotation label prefix: b IIF Add to existing annotation IIF Add to existing digest fragment ions. IIF Apply charge filter
Digest Specificity Number of missed cleavage sites: 1 Display complete and partial fragments	Associated Data File Data File: DIGEST_EXAMPLE_1 Browse Function: Scan (200:1650) ES+ History: Center 1 (Cen.1. 50.00, Ht)

Figure 4.1.3.17. Parameters required for annotating the β-chain tryptic peptides.

Select Add to existing annotation. This option should only be available when the α -chain peptides have been annotated. If it is not selected, the β -chain peptides will not be annotated and the α -chain peptides will remain annotated.

🎉 <u>F</u> ile	Edit Display	Se <u>a</u> rch <u>P</u> rimary	Secondary	Winde	ow <u>H</u> elp				- 6	5
ž 🕢		3 🗈 I+ +	♦ ♦I A	S-S	ાળ સર 📰	R 8				
-										
IEMOGL	OBIN BETA CHA	N. HOMO SAPIE	NS (HUMAN),	PAN TI	ROGLODYTES	(CHIMPANZE	E), AND PAN	PANISCUS		
rypsin:/	K-\P /R-\P	SI_EAAMPLE_1	(200 - 1050	annu)						
'rag#	Res	# Sequence			Theor (Bo)	[M+H]	[M+2H]	[M+3H1	[M+4H]	
T1	1-	8 (-)VHLTP	EEK(S)		951.50	952.51	476.76	318.18	238.88	
T2	9-1	7 (K) SAVTA	LWGK (V)		931.51	932.52	466.76	311.51	233.89	
T3	18-3	0 (K) VNVDE	VGGEALGR (L)		1313.66	1314.67	657.84	438.89	329.42	
T4	31-4	0 (R) LLVVY	PWTOR (F)		1273.72	1274.73	637.87	425.58	319,44	
T5	41-5	9 (R) FFESE	GDLSTPDAVMO	N	2057.94	2058,95	1029,98	686.99	515,49	
		PK (V)								
Т6	60-6	1 (K) VK (A)			245.17	246.18	123.59	82.73	62.30	
T7	62-6	5 (K) AHGK (ю		411.22	412.23	206.62	138.08	103.81	
тя Т8	66-6	6 (K) K (V)			146.11	147.11	74.06	49.71	37.53	
T0	67-9	2 (E)VIGAR	SDCI ARI DNI E	((3)	1669.99	1669.99	835.45	557 30	418 23	
T10	93_0	5 (E) CTEAT	SELHODE	(0)	1420 67	1421 67	711 34	474 56	356 17	
T11	96-10		ESEDICOR (E)		1125 56	1126 56	562 70	276 10	292.40	
T12	105-12	(R) 11(201/	INCM ANNES	(R)	1719 97	1710 07	860.49	574.00	430 75	
T12	103-12	(K) LLONV	LVCV LAIIIIP OF	(5)	1222 60	1979 70	600.45	460.24	945 49	
714	121-13	2 (K) EF IFF			1149 67	1140.67	609.03	400.24	343.43	
715	100-14	4 (K) VVAGV	ANALARK(I)		1140.07	210.14	575.34	107.05	200.17	
115	140-14	6 (K)III(-)			316.13	319.14	160.07	107.05	60.54	
11-2	1-1	/ (-)VHLTP	BERSAVTALWO	ĸ	1005.00	1000.01	933.51	022.00	40/.20	
		(V)		_						
12-3	9-3	(K) SAVTA	LWGKVNVDEVG	G	2227.16	2228.17	1114.59	/43.39	557.80	
		EALGR (L)								
T3-4	18-4	0 (K) VNVDE	VGGEALGRLLV	v	2569.37	2570.37	1285.69	857.46	643.35	
		YPWTOR (F)							
T4-5	31-5	9 (R) LLVVY	PWTORFFESFO	Ð	3313.65	3314.66	1657.83	1105.56	829.42	
		LSTPDAVM	GNPK (V)							
T5-6	41-6	1 (R) FFESF	GDLSTPDAVMO	N	2285.10	2286.11	1143.56	762.71	572.28	
		PKVK (A)								
T6-7	60-6	5 (K) VKAHG	K (K)		638.39	639.39	320.20	213.80	160.60	
T7-8	62-6	6 (K) AHGKK	(V)		539.32	540.33	270.67	180.78	135.84	
T8-9	66-8	2 (K) KVLGA	FSDGLAHLDNI	K	1796.98	1797.99	899.50	600.00	450.25	
		(G)								
T9-10	67-9	5 (K) VLGAF	SDGLAHLDNLF	G	3071.54	3072.55	1536.78	1024.85	768.89	
		TFATLSEL	HCDK(L)							
T10-11	83-10	4 (K) GTFAT	LSELHCDKLH	D	2528.21	2529.22	1265.11	843.75	633.06	
		PENFR (L)								
T11-12	96-12	0 (K) LHVDP	ENFRLLGNVLV	c	2826.51	2827.52	1414.26	943.18	707.64	
		VLAHHFGK	(E)							
T12-13	105-13	2 (R) LLGNV	LVCVLAHHFGE	Е	3078.65	3079.66	1540.33	1027.22	770.67	
		FTPPVDAA	YOK (V)							
T13-14	121-14	4 (K) EFTPP		v	2508.35	2509.36	1255.18	837.12	628.10	
		ANALAHK	Y)							
T14-15	133-14	6 (K) \/AGV	-) ANALAHEVH (-	a	1448.79	1449.80	725.40	483.94	363.21	
	100 13	· (10) · · · · · · · · · · · · · · · · · · ·	au the antern (,			120110	100.01	000111	

Figure 4.1.3.18. The full list of β -chain tryptic peptides.

All the α - and β -chain tryptic peptides should now be annotated, as shown in Figure 4.1.3.19.

The peaks associated with this spectrum will remain annotated as shown in Figure 4.1.3.19. Hence, when the original MCA data file is opened, the spectrum may be displayed as a background-subtracted and smoothed MCA spectrum, as shown in Figure 4.1.3.20.

The peaks in the spectra from other haemoglobins may be similarly annotated by selecting appropriate chain sequences. For example, with foetal haemoglobin,

4.1.4. Summary of the tables devised to assist in searching for variant tryptic peptides.

4.2. Tables to assist in searching for tryptic peptides produced from α -chain variants that differ from normal by $0, \pm 1, \pm 3$ and ± 4 Da.

Table 4.2.1. The 37 mutations and m/z values of tryptic peptides that are produced as a result of single amino acid changes giving $\leq \pm 6$ Da change in the mass of the α -chain and do not involve Lys.

Table 4.2.2. The pairs of tryptic peptides resulting from the seven single amino acid changes that give $<\pm 6$ Da in the mass of the α -chain and involve a mutation to Lys.

Table 4.2.3. The 32 tryptic peptides and their m/z values that result from a single amino acid change giving $<\pm 6$ Da change in the mass of the α -chain and involve a mutation from Lys.

4.3. Tables to assist in searching for tryptic peptides from α -chain variants that involve **Arg or Lys** and give a mass change >±6 **Da** from normal (excluding Arg \leftrightarrow Lys).

4.4. Tables to assist in searching for tryptic peptides produced from β -chain variants that differ from normal by 0, ±1, ±3 and ±4 Da, and do not involve Lys.

Table 4.4.1. The 44 mutations and m/z values of tryptic peptides that are produced as a result of single amino acid changes that give $<\pm 6$ Da change in the mass of the β -chain and do not involve Lys.

Table 4.4.2. The pairs of new tryptic peptides resulting from the twelve single amino acid changes that give $<\pm 6$ Da in the mass of the β -chain and involve a mutation to Lys.

Table 4.4.3. The 30 tryptic peptides and their m/z values that result from a single amino acid change giving <6 Da change in the mass of the β -chain and involve a mutation from Lys.

4.5. Tables to assist in searching for tryptic peptides produced from β -chain variants that involve **Arg** or **Lys** and give a mass change >±6 **Da** from normal (excluding Arg to Lys).

4.6. Tables to assist in searching for some tryptic peptides produced from α - and β - chain variants that involve the mutations **Xxx** \leftrightarrow **Asp** when adjacent to Lys.

Table 4.6.1. Some $\alpha 6Asp \rightarrow Xxx$ mutations that can occur by a single base change in the nucleotide codon.

Table 4.6.2. Some $\alpha 126Asp \rightarrow Xxx$ mutations that can occur by a single base change in the nucleotide codon.

Table 4.6.3. Some β 94Asp \rightarrow Xxx mutations that can occur by a single base change in the nucleotide codon.

Table 4.6.4. This table was devised to assist in searching for some of the tryptic peptides resulting from the mutation $Xxx \rightarrow Asp$ when Xxx is adjacent to Lys.

4.2. Tables to assist in searching for tryptic peptides produced from α -chain variants that differ from normal by 0, ±1, ±3 and ±4 Da

These tables were devised to assist in searching for tryptic peptides from α -chain variants that cannot be resolved from the normal α -chain when analysing the globin chains in heterozygotes. This situation arises when the normal and variant masses differ by <±6 Da. Within these limits, there are seven mass changes (0, ±1, ±3 and ±4 Da) that are produced by a single amino acid change governed by a single base change in the nucleotide codon. There are 80 such variants in the α -chain including four Leu→IIe mutations. Three types of mutation are considered:

- First, there are mutations that do not involve Lys. These simply change the mass of the tryptic peptide and are listed in Table 4.2.1.
- Second, there are mutations that involve an amino acid change to Lys, which creates a new cleavage site, and hence two new peptides in the tryptic digest (Table 4.2.2.).
- Third, there are mutations that involve an amino acid change <u>from</u> Lys, which removes a tryptic cleavage site (Table 4.2.3.).
- The mutation Leu \rightarrow Ile produces neither a mass change nor a new cleavage site and thus cannot be detected by mass spectrometry. It is not included in the Tables. Of the 18 Leu in the α -chain, only four at α 91, α 100, α 101 and α 113 can mutate to Ile by a single base change in the codon.

The m/z values of the variant peptide ions are given in the Tables. For peptides below <u>mass</u> 2,300 Da, only monoisotopic m/z values are given (normal font). For peptides above <u>mass</u> 2,300 Da, average m/z values are given in italics beneath the monoisotopic values.

Monoisotopic masses are based on: C: 12.0 Da, H: 1.0078250 Da, N: 14.0030740 Da, O: 15.9949146 Da and S: 31.9720718 Da. Average masses are based on: C: 12.011 Da, H: 1.00794 Da, N: 14.00674 Da, O:15.9994 Da and S: 32.066 Da.

NL: Not listed in http://globin.bx.psu.edu

I: interference.

 ΔM is the nominal mass change of the variant α -chain from normal (Da).

Variants that have been identified and m/z values that have been observed are shown in bold font.

All the mutations shown in the tables can occur by a single base change in the DNA codon.

Unless otherwise stated, the variants are in the $\alpha 1$ or $\alpha 2$ gene. αCT : α -chymotrypsin

Cleavage by trypsin at α 7Lys and α 127Lys is hindered by α 6Asp and α 126Asp, respectively, giving mainly α T1-2 and α T12-13 peptides. These peptides are included in the tables.

Peptide Mutation αT1	ΔΜ	Name	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
α6Asp→Asn	-1	Dunn		243.482	364.719	728.431
α 4Pro \rightarrow Thr	4	NL		245.142	367.209	733.410
αΤ2						
α9Asn→Ile	-1	NL		154.110	230.661	460.314 (I)
α9Asn→Asp	1	NL		154.757	231.632	462.256 (I)
α8Thr→Pro	-4	NL		153.098	229.143	457.277 (I)
αΤ1-2						
α6Asp→Asn	-1	Dunn		390.900	585.846	1,170.685
α9Asn→Ile	-1	NL		390.908	585.859	1,170.710
α9Asn→Asp	1	NL		391.556	586.830	1,172.653
α8Thr→Pro	-4	NL		389.896	584.341	1,167.674
$\alpha 4 Pro \rightarrow Thr$	4	NL		392.560	588.336	1,175.664

Table 4.2.1. The 37 mutations and m/z values of tryptic peptides that are produced as a result of single amino acid changes giving $<\pm 6$ Da change in the mass of the α -chain and do not involve Lys.

Peptide	$\Delta \mathbf{M}$	Name	$(M+4H)^{4+}$	$(M+3H)^{3+}$	$(M+2H)^{2+}$	$(M+H)^+$
Mutation						
αΤ4						
α23Glu→Gln	-1	Memphis	382.944	510.255	764.879	1,528.751
α27Glu→Gln	-1	NL				
α30Glu→Gln	-1	G-Honolulu		510.255	764.879	1,528.751
Beware confusion	with C	D-Padova. Distinguis	sh by ce-HPL	C. G-Honolul	lu elutes with	Hb A ₂
α T 5						
α 38Thr \rightarrow Pro	-4	NL		356.525	534.284	1.067.560
α 39Thr \rightarrow Pro	-4	NL		000020	00.120.	1,007.000
$\alpha 37 Pro \rightarrow Thr$	4	NL		359 188 (D	538 279	1 075 550
0.07110 7111	•			5591100 (1)	0001277	1,070.000
αT6						
α47Asp→Asn	-1	Arya	458.983	611.641	916.958	1,832.908
α54Gln→Glu	1	Mexico	459.475	612.297	917.942	1,834.876
α41Thr→Pro	-4	NL	721.364	961.483	1,441.721	2,882.434
$\alpha 44$ Pro \rightarrow Thr	4	NL	460.228	613.301	919.448	1,837.887
$\alpha T9$ Overlay norm	al & s	uspect variant $\alpha T9^{\circ}$	+ or $\alpha T9^{4+}$ to	detect -1 Day	variants. Iden	tify using α -CT
α64Asp→Asn	-1	G-Waimanalo	749.632	999.172	1,498.257	2,995.506
<0.4 H	1	NI	/50.09/	999.793	1,499.186	2,997.363
α68Asn→lle	-1	NL	749.637	999.182	1,498.269	2,995.531
	1	C Deat	750.107	999.800	1,499.200	2,997.403
α/4Asp→Asn	-1	G-Pest	749.632	999.172	1,498.257	2,995.506
$\alpha 75 \Lambda cn \Lambda cn$	1	Mateuro Oki	/30.09/	999.793	1,499.100	2,997.303
$\alpha 78 \text{Asp} \rightarrow \text{Ash}$	-1 1	Maisue-Oki				
α 85 A sn \rightarrow A sn	-1 1	NL C Norfolk	740 632	000 172	1 108 257	2 005 506
uosasp-asn	-1	G-INDITOIK	749.032	JJJ.1/4	1,470.237	2,995.500
α68Asn→Asp	1	Ube-2	750.124	999.830	1,499.241	2,997.474
I I I I I I I I I I I I I I I I I I I			750.589	1,000.450	1,500.170	2,999.333
α78Asn→Asp	1	J-Singa				
α67Thr→Pro	-4	NL	748.880	998.170	1,496.751	2,992.495
			749.346	998.792	1,497.684	2,994.360
α 77Pro \rightarrow Thr	4	NL	750.877	1,000.834	1,500.746	3,000.485
			751.340	1,001.451	1,501.672	3,002.336
αΤ11						
α94Asp→Asn	-1	Titusville		273.158	409.233	817.457
α97Asn→Ile	-1	NL		273.166	409.245	817.482
α97Asn→Asp	1	Cheektowaga, $\alpha 2$		273.814	410.217	819.425
α 95Pro \rightarrow Thr	4	Godavari		274.817	411.722	822.436
αT12						
$\alpha 116Glu \rightarrow Gln$	-1	Oleander	742 413	989 548	1 483 818	2 966 629
	1	oleander	742.890	990.185	1.484.773	2.968.538
α 126Asp \rightarrow Asn	-1	Tarrant	742.413	989.548	1.483.818	2.966.629
(special case, see T	Table 4	.6.2)	742.890	990.185	1,484.773	2,968.538
$\alpha 108$ Thr \rightarrow Pro	-4	NL	741.660	988.545	1,482.313	2,963.618
			742.139	989.183	1,483.271	2,965.534
α118Thr→Pro	-4	NL				
$\alpha 114$ Pro \rightarrow Thr	4	Jura, α2	743.658	991.208	1,486.308	2,971.608
			744.134	991.842	1,487.259	2,983.511
$\alpha 119$ Pro \rightarrow Thr	4	NL				
Peptide Mutation	ΔΜ	Name	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
------------------------------------	---------	----------	----------------------	----------------------	----------------------	--------------------------------------
αT12						
α116Glu→Gln	-1	Oleander	742.413	989.548	1,483.818	2,966.629
			742.890	990.185	1,484.773	2,968.538
α126Asp→Asn	-1	Tarrant	742.413	989.548	1,483.818	2,966.629
(special case, see	Table 4	1.6.2)	742.890	990.185	1,484.773	2,968.538
α108Thr→Pro	-4	NL	741.660	988.545	1,482.313	2,963.618
			742.139	989.183	1,483.271	2,965.534
α118Thr→Pro	-4	NL				
$\alpha 114$ Pro \rightarrow Thr	4	Jura, α2	743.658	991.208	1,486.308	2,971.608
			744.134	991.842	1,487.259	2,983.511
α 119Pro \rightarrow Thr	4	NL				

Peptide	ΔM	Name	(M+5H) ⁵⁺	$(M+4H)^{4+}$	$(M+3H)^{3+}$	$(M+2H)^{2+}$
Mutation						

Mutation α T12-13 Overlay normal and suspect α T(12-13)³⁺ or α T(12-13)⁴⁺ ions to detect $\alpha/(\alpha-1$ Da) variants in heterozygotes. Identify using α -CT digests.

α116Glu→Gln	-1	Oleander	840.871	1,050.837	1,400.781	2,100.667
			841.406	1,051.505	1,401.671	2,102.002
α126Asp→Asn	-1	Tarrant	Expect clear normal aT	avage at 127L	ys to give va see also Table	riant α T12 and $24.6.2$
α108Thr→Pro	-4	NL	840.269 840.805	1,050.085 1,050.754	1,399.777 1,400.670	2,099.161 2,100.500
α118Thr→Pro	-4	NL				,
α134Thr→Pro	-4	NL				
α137Thr→Pro	-4	NL				
$\alpha 114 Pro \rightarrow Thr$	4	Jura, $\alpha 2$	841.867 <i>842.400</i>	1,052.082 <i>1,052.748</i>	1,402.440 <i>1,403.329</i>	2,103.156 2, <i>104.489</i>
$\alpha 119$ Pro \rightarrow Thr	4	NL				

Peptide	ΔM	Name	$(M+4H)^{4+}$	$(M+3H)^{3+}$	$(M+2H)^{2+}$	(M+H) ⁺
Mutation						
αΤ13						
α134Thr→Pro	-4	NL	312.936	416.912	624.864	1,248.720
$\alpha 137$ Thr \rightarrow Pro	-4	NL				

Table 4.2.2. The pairs of tryptic peptides resulting from the seven single amino acid changes that give less than ± 6 Da change in the mass of the α -chain and involve a mutation to Lys. Thus, a new cleavage site is produced, creating two new tryptic peptides. These mutations give a significant increase in positive charge and are readily detected by ce-HPLC and IEF.

The presence of these new peptide ions at their predicted m/z values identifies the mutation.

Mutation	ΔM	Name	$(M+3H)^{3+}$	$(M+2H)^{2+}$	(M + H) ⁺
Peptides					
α23Glu→Lys	-1	Chad			
αT4a, 17VGAHAGK			213.791	320.183	639.358
αT4b, 24YGAEALER			303.488	454.728	908.448
α27Glu→Lys	-1	Shuangfeng	3		
αT4a, 17VGAHAGEYGAK			353.846	530.265	1,059.522
αT4b, 28ALER			163.433	244.646	488.283
α30Glu→Lys	-1	O-Padova			
αT4a, 17VGAHAGEYGAEAL	K		458.234	686.847	1,372.686
αT4b, 31R					175.120
αT4, 17VGAHAGEYGAEALk	KR		510.268	764.898	1,528.787

The α T4a peptide from O-Padova does not occur in 30-minute digests leading to possible confusion with G-Honolulu. Hence, variant α T4 is observed. Use ce-HPLC data to distinguish. On the ce-HPLC, G-Honolulu elutes with Hb A₂. O-Padova elutes just before Hb C.

α32Met→Lys	-3	NL			
αT5a, 32K					147.113
αT5b, 33FLSFPTTK			314.177	470.761	940.514
	0				
α54Gln→Lys	0	NL			
αT6a, 41TYFPHFDLSHGSAK			536.260 (I)	803.887	1,606.765
αT6b, 55VK				123.595	246.182(I)
α 76Met \rightarrow Lys	-3	Noko			
αT9a, 62VADALTNAVAHVD	DK		513.599	769.895	1,538.781
αT9b, 77PNALSALSDLHAHK			491.932 (I)	737.395	1,473.781
α116Glu→Lys	-1	O-Indone	sia		
αT12a, 100LLSHCLLVTLAA	HLP	AK	600.691 (I)	900.532 (I)	1,800.06(I)
αT12b, 117FTPAVHASLDK			395.881	593.317	1,185.627
αT12b-13, 117FTPAVHASLD	<u>K</u> FL	ASVSTVLI	ſSK		
			807.113	1,210.166	2,419.324
			807.609	1,210.910	2,420.812

Expect little or no cleavage at -KP- in Noko above, i.e. look for -3 Da mass change in α T9. There is little or no cleavage between α T12b and α T13 in O-Indonesia due to α 126Asp adjacent to α 127Lys. Hence α T(12b-13) is observed.

Table 4.2.3. The 32 tryptic peptides and their m/z values that result from a single amino acid change giving $<\pm 6$ Da change in the α -chain mass and involve a mutation from Lys. Thus, a tryptic cleavage site is abolished and two adjacent tryptic peptides are combined into one larger new peptide. These mutations give a significant increase in negative charge and are readily detected by ce-HPLC and IEF. The presence of the new peptide at its predicted m/z values identifies the mutation. α Lys139 (AAA) cannot mutate to Met (ATG) by a single base change in the codon.

Peptide	ΔM	Name	$(M+4H)^{4+}$	$(M+3H)^{3+}$	$(M+2H)^{2+}$	$(M+H)^{+}$
Mutation						
αT1-2						
α7Lys→Gln	0	J-Brainerd, $\alpha 2$	293.664	391.216	586.320	1,171.632
α7Lys→Glu	1	Kurosaki	293.910	391.544	586.812	1,172.616
α7Lys→Met	3	NL	294.409	392.210	587.811	1,174.614
5						,
αΤ2-3						
α11Lys→Gln	0	J-Wenchang-Wun	ning	325.507	487.757	974.506
α11Lys→Glu	1	NL	244.628	325.835	488.249	975.490
α11Lys→Met	3	NL	245.128	326.501	489.248	977.488
2						
αΤ1-2-3						
α11Lys→Gln	0	J-W-Wuming	421.981	562.306	842.955	1,684.902
α11Lys→Glu	1	NL	422.227	562.634	843.447	1,685.886
α11Lys→Met	3	NL	422.727	563.300	844.446	1,687.884
5						,
αΤ3-4						
α16Lys→Gln	0	NL	511.498	681.661	1,021.988	2,042.968
α16Lys→Glu	1	I, I-Philad'ia	511.744	681.989	1,022.480	2,043.952
α16Lys→Met	3	Harbin	512.243	682.655	1,023.479	2,045.950
5					,	,
αΤ5-6						
α40Lys→Gln	0	Linwood, a2	722.354	962.803	1,443.700	2,886.393
·		,	722.825	963.431	1,444.642	2,888.277
α40Lys→Glu	1	Kariya	722.600	963.131	1,444.192	2,887.377
•		•	723.071	963.759	1,445.135	2,889.262
α40Lys→Met	3	Kanagawa	723.099	963.797	1,445.191	2,889.374
		-	723.592	964.454	1,446.176	2,891.345
αΤ6-7						
α56Lys→Gln	0	NL	554.019	738.356	1,107.030	2,213.053
α56Lys→Glu	1	Shaare Zedek	554.265	738.684	1,107.522	2,214.037
α56Lys→Met	3	NL	554.765	739.350	1,108.521	2,216.035
αΤ7-8						
α60Lys→Gln	0	NL	176.096	263.641	526.274	
α60Lys→Glu	1	Dagestan		176.425	264.133	527.258
α60Lys→Met	3	NL		177.090	265.132	529.256
αΤ8-9						
α61Lys→Gln	0	NL	625.716	781.893	1,042.188	1,562.778
			626.102	782.376	1,042.832	1,563.743
α61Lys→Glu	1	Miyagi	625.913	782.139	1,042.516	1,563.270
			626.299	782.622	1,043.160	1,564.236
α61Lys→Met	3	NL	626.312	782.639	1,043.182	1,564.269
			626.716	783.143	1,043.854	1,565.277

Peptide Mutation αT9-10	ΔΜ	Name	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M+H) ⁺
α90Lys→Gln	0	Bergerac	653.934 654.337	817.166 817.669	1,089.218 1,089.889	1,633.323 1,634.330
α90Lys→Glu	1	Sudbury	654.131 654.534	817.412 817.915	1,089.546	1,633.815 1,634.822
α90Lys→Met	3	Handa, Munakata	654.530 654.950	817.911 818.436	1,090.212 1,090.912	1,634.814 1,635.864
αΤ11-12						
α99Lys→Gln	0	NL	754.206 754.687	942.506 943.107	1,256.338 <i>1,257.140</i>	1,884.004 1,885.206
α99Lys→Glu	1	Turriff	754.403 <i>754</i> .884	942.752 943.353	1,256.666 1,257.468	1,884.496 1,885.699
α99Lys→Met	3	NL	754.803 <i>755.301</i>	943.251 943.874	1,257.332 1,258.163	1,885.495 1,886.740
αΤ11-12-13						
α99Lys→Gln	0	NL	1000.946 <i>1001.579</i>	1,250.930 <i>1,251.722</i>	1,667.571 <i>1,668.626</i>	2,500.852 2,502.436
α99Lys→Glu	1	Turriff	1001.142 <i>1001.776</i>	1,251.176 <i>1,251.9</i> 68	1,667.899 <i>1,668.955</i>	2,501.344 2,502.928
α99Lys→Met	3	NL	1001.542 <i>1002.193</i>	1,251.675 <i>1,252.4</i> 89	1,668.565 1,669.649	2,502.343 2,503.969
αΤ12-13						
α127Lys→Gln	0	NL	841.061 841.594	1,051.074 <i>1,051.740</i>	1,401.096 <i>1,401.985</i>	2,101.141 2, <i>102.473</i>
α127Lys→Glu	1	No name, α2	841.258 <i>841.791</i>	1,051.320 <i>1,051.987</i>	1,401.424 <i>1,402.313</i>	2,101.633 2,102.965
α127Lys→Met	3	NL	841.657 842.207	1,051.820 <i>1,052.507</i>	1,402.090 <i>1,403.007</i>	2,102.632 2,104.007
αΤ12-13-14						
α139Lys→Gln	0	NL	904.894 905.467	1,130.865 <i>1,131.581</i>	1,507.485 <i>1,508.439</i>	2,260.723 2,262.155
α139Lys→Glu	1	Hanamaki-1,α1 Hanamaki-2,α2	905.091 905.664	1,131.111 <i>1,131.</i> 828	1,507.813 <i>1,508.767</i>	2,261.215 2,262.647
Peptide Mutation αT13-14	ΔM	Name	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺

α113-14						
α139Lys→Gln	0	NL	393.717	524.620	786.426	1,571.843
α139Lys→Glu	1	Hanamaki-1,α1	393.963	524.948	786.918	1,572.827
		Hanamaki-2,α2				

4.3. Tables to assist in searching for tryptic peptides from <u>α-chain</u> variants that involve Arg or Lys and give a mass change >±6 Da from normal (excluding Arg↔Lys).

These tables were devised to assist in systematically searching tryptic digest spectra for variant α -chain peptides from mutations that involve Arg or Lys (excluding $Arg \leftrightarrow Lys$) and the mass change of the variant is $>\pm 6$ Da from normal. These mutations either create a new tryptic cleavage site and hence cut the peptide containing the mutation into two new smaller peptides or abolish one of the cleavage sites causing two adjacent peptides to be combined into one new larger peptide. Since the masses of such peptides are not simply related to the masses of the corresponding normal peptides, it is helpful to have tables available that give the m/z values of these new peptides. The following 23 tables list the m/z

ratios of all the α -chain tryptic peptide ions that involve mutations to or from Arg and Lys, give a mass change greater than ± 6 Da and are governed by a single base change in the DNA codon.

For peptides below <u>mass</u> 2,300 Da, only monoisotopic values are given (normal font).

For peptides above $\underline{\text{mass}}$ 2,300 Da, average values are given beneath the monoisotopic values.

Unless otherwise stated, the variants can be in either the $\alpha 1$ or the $\alpha 2$ gene.

	Nominal Mass	Number of	
Mutation	Change (Da)	Mutations	Table
Arg→Cys	-53	1	4.3.1
Arg→Gln	-28	1	4.3.2
Arg→Gly	-99	3	4.3.3
Arg→His	-19	1	4.3.4
Arg→Leu	-43	2	4.3.5
Arg→Met	-25	1	4.3.6
Arg→Pro	-59	2	4.3.7
Arg→Ser	-69	2	4.3.8
Arg→Thr	-55	1	4.3.9
Arg→Trp	30	2	4.3.10
Asn→Lys	14	4	4.3.11
Cys→Arg	53	1	4.3.12
Gln→Arg	28	1	4.3.13
Gly→Arg	99	7	4.3.14
His→Arg	19	10	4.3.15
Leu→Arg	43	18	4.3.16
Lys→Asn	-14	11	4.3.17
Lys→Ile	-15	1	4.3.18
Lys→Thr	-27	11	4.3.19
Met→Arg	25	2	4.3.20
Pro→Arg	59	7	4.3.21
Ser→Arg	69	4	4.3.22
Trp→Arg	-30	1	4.3.23

Table 4.3.1. The new tryptic peptides produced by the three Arg \rightarrow Cys mutations in the α -chain	n
Mass change: -53.092 Da (monoisotopic), -53.043 Da (average)	

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
α31Arg→Cys NL	αT4-5	2,528.172 2,529.878	633.051 633.477	843.732 844.301	1,265.094 1,265.947	2,529.179 2,530.886
α92Arg→Cys NL	αT10-11	1,033.527	259.390	345.517	517.771	1,034.535
α141Arg→Cys Nunobiki	αT14	284.083			143.049	285.091

Monoisotopic mass and m/z values are in normal font; average values are in italics.

NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a negative polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font. Of the mutations shown, only Nunobiki is possible by a single base change in the DNA codon (CGT \rightarrow TGT).

Table 4.3.2. The new tryptic peptides produced by the three Arg \rightarrow Gln mutations in the α -chain
Mass change: -28.043 Da (monoisotopic), -28.057 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
α31Arg→Gln NL	αT4-5	2,553.221 2,554.864	639.313 639.724	852.081 852.629	1,277.618 1,278.440	2,554.229 2,555.872
α92Arg→Gln J-Cape Town	αΤ10-11	1,058.576	265.652	353.866	530.296	1,059.584
α141Arg→Gln NL	αT14	309.133			155.574	310.140

Notes.

Monoisotopic mass and m/z values are in normal font; average values are in italics.

NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a negative polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font. Of the mutations shown, only J-Cape Town is possible by a single base change in the DNA codon (CGG \rightarrow CAG).

Table 4.3.3. The new tryptic peptides produced by the three Arg \rightarrow Gly mutations in the α -chain
Mass change: -99.080 Da (monoisotopic), -99.136 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	$(M+2H)^{2+}$	(M + H) ⁺
α31Arg→Gly NL	αΤ4-5	2,482.184 2,483.785	621.554 621.954	828.402 828.936	1,242.100 <i>1,242.900</i>	2,483.192 2,484.793
α92Arg→Gly NL	αT10-11	987.539	247.893	330.187	494.777	988.547
α141Arg→Gly J-Camaguey	αT14	238.095			120.056	239.103

Monoisotopic mass and m/z values are in normal font; average values are in italics.

NL: Not listed in http://globin.bx.psu.edu.

This mutation causes a negative polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font. All these mutations are possible by a single base change in the DNA codon.

Table 4.3.4. The new tryptic peptides produced by the three Arg \rightarrow His mutations in the α -chain
Mass change: -19.042 Da (monoisotopic), -19.046 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
α31Arg→His NL	αΤ4-5	2,562.221 2,563.874	641.563 <i>641.976</i>	855.082 855.633	1,282.188 <i>1,282.945</i>	2,563.229 2,564.882
α92Arg→His NL	αT10-11	1,067.576	267.902	356.867	534.796	1,068.584
α141Arg→His Suresnes	αΤ14	318.133			160.074	319.141 (I)

Notes.

Monoisotopic mass and m/z values are in normal font; average values are in italics.

NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a negative polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

I: interference from β T15⁺ ion.

This mutation was confirmed by tandem MS of the intact variant $(M+16H)^{16+}$ ion.

Of the mutations shown, only α 141Arg can mutate to His by a single base change in the DNA codon (CGT \rightarrow CAT).

Table 4.3.5. The new tryptic peptides produced by the three Arg \rightarrow Leu mutations in the α -chai	n
Mass change: -43.017 Da (monoisotopic), -43.028 Da (average)	

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
α31Arg→Leu NL	αΤ4-5	2,538.247 2,539.893	635.569 <i>635.981</i>	847.090 847.639	1,270.131 <i>1,270.954</i>	2,539.254 2,540.900
α92Arg→Leu Chesapeake	αΤ10-11	1,043.602	261.908	348.875	522.809	1,044.609
α141Arg→Leu Legnano	αT14	294.158			148.087	295.166

Monoisotopic mass and m/z values are in normal font; average values are in italics.

NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a negative polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

Of the mutations shown, only Chesapeake and Legnano are possible by a single base change in the DNA codon.

Table 4.3.6. The new tryptic peptides produced by the three Arg→Met mutations in the α-chain Mass change: -25.061 Da (monoisotopic), -24.989 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
α31Arg→Met NL	αΤ4-5	2,556.203 2,557.932	640.059 640.491	853.075 853.652	1,279.109 <i>1,279.974</i>	2,557.211 2,558.940
α92Arg→Met NL	αT10-11	1,061.558	266.397	354.860	531.787	1,062.566
α141Arg→Met NL	αT14	312.114			157.065	313.122

Notes.

Monoisotopic mass and *m/z* values are in normal font; average values are in italics. NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a negative polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

Of the mutations shown, only α 31Arg \rightarrow Met is possible by a single base change in the DNA codon (AGG \rightarrow ATG).

Table 4.3.7. The new tryptic peptides produced by the three Arg \rightarrow Pro mutations in the α -chain	n
Mass change: -59.048 Da (monoisotopic), -59.071 Da (average)	

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
α31Arg→Pro NL	αΤ4-5	2,522.215 2,523.850	631.562 <i>631.970</i>	841.746 842.291	1,262.115 <i>1,262.933</i>	2,523.223 2,524.858
α92Arg→Pro Monou	αΤ10-11	1,027.570	257.900	343.531	514.793	1,028.578
α141Arg→Pro Singapore	αΤ14	278.127			140.071	279.135

Monoisotopic mass and m/z values are in normal font; average values are in italics.

NL: Not listed in http://globin.bx.psu.edu.

This mutation causes a negative polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

Of the mutations shown, only Monou and Singapore are possible by a single base change in the DNA codon.

Table 4.3.8. The new tryptic peptides produced by the three Arg→Ser mutations in the α-chain Mass change: -69.069 Da (monoisotopic), -69.109 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
α31Arg→Ser Prato	αΤ4-5	2,512.194 2,513.811	629.056 629.461	838.406 838.945	1,257.105 1,257.914	2,513.202 2,514.819
α92Arg→Ser NL	αT10-11	1,017.550	255.395	340.191	509.783	1,018.557
α141Arg→Ser J-Cubujuqui	αT14	268.106			135.061	269.114

Notes.

Monoisotopic mass and m/z values are in normal font; average values are in italics. NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a negative polarity change in the α -chain.

Variants identified by MS and ions observed digest spectra are shown in bold font.

Of the mutations shown, only Prato and J-Cubujuqui are possible by a single base change in the DNA codon.

Table 4.3.9. The new tryptic peptides produced by the three Arg \rightarrow Thr mutations in the α -chain
Mass change: -55.053 Da (monoisotopic), -55.083 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
α31Arg→Thr NL	αΤ4-5	2,526.210 2,527.838	632.560 632.967	843.078 <i>843.621</i>	1,264.113 <i>1,264.927</i>	2,527.218 2,528.846
α92Arg→Thr NL	αΤ10-11	1,031.565	258.899	344.863	516.790	1,032.573
α141Arg→Thr NL	αT14	282.122			142.069	283.129

Monoisotopic mass and m/z values are in normal font; average values are in italics.

NL: Not listed in http://globin.bx.psu.edu.

This mutation causes a negative polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

Of the mutations shown, only α 31Arg \rightarrow Thr is possible by a single base change in the DNA codon (AGG \rightarrow ACG).

Table 4.3.10. The tryptic peptides produced by the three Arg→Trp mutations in the α-chain Mass change: 29.978 Da (monoisotopic), 30.026 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
α31Arg→Trp NL	αT4-5	2,611.242 2,612.946	653.818 654.245	871.422 871.990	1,306.629 <i>1,307.481</i>	2,612.250 2,613.954
α92Arg→Trp Cemenelum	αT10-11	1,116.597	280.157	373.207	559.306	1,117.605
α141Arg→Trp NL	αT14	367.153			184.584	368.161

Notes.

Monoisotopic mass and m/z values are in normal font; average values are in italics.

NL: Not listed in http://globin.bx.psu.edu.

This mutation causes a negative polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

Of the mutations shown, only α 31Arg \rightarrow Trp and α 92Arg \rightarrow Trp are possible by a single base change in the DNA codon.

Table 4.3.11. The new tryptic peptides produced by the four Asn→Lys mutations in the α-chain Mass change: 14.052 Da (monoisotopic), 14.070 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
α9Asn→Lys	αT2a	247.153				248.161
Park Ridge	aT2b	245.174				246.182
	αT1-2a	957.550		320.191	479.783	958.557
α68Asn→Lys	αТ9а	716.407		239.810	359.211	717.415
G-Philadelphia	aT9b	2,311.138	578.792	771.387	1156.577	2,312.146
		2,312.593	579.156	771.872	1,157.304	2,313.600
	α T8-9 a	844.502		282.508	423.259	845.510
α78Asn→Lys	αТ9а	1,765.867	442.475	589.630	883.941	1,766.875
Stanleyville II	aT9b	1,261.678	316.427	421.567	631.847	1,262.686
	αT8-9 a	1,893.962	474.498	632.328	947.989	1,894.970
α97Asn→Lys	αT11a	556.322			279.169	557.330
Dallas	aT11b	293.174			147.598	294.182

Notes.

Monoisotopic mass and m/z values are in normal font; average values are in italics.

This mutation causes a positive polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

All these mutations are possible by a single base change in the DNA codon (AAC \rightarrow AAA or AAG).

Table 4.3.12. The new tryptic peptides produced by the single Cys→Arg mutation in the α-chain Mass change: 53.092 Da (monoisotopic), 53.043 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
α104Cys→Arg	αT12a	624.371		209.131	313.193	625.379
NL	aT12b	2,413.337	604.342	805.453	1,207.676	2,414.345
		2,414.831	604.716	805.952	1,208.424	2,415.839
	αT12b-13	3,647.034	912.766	1,216.686	1,824.525	3,648.042
		3,649.290	913.330	1,217.438	1,825.653	3,650.298

Notes.

Monoisotopic mass and m/z values are in normal font; average values are in italics. NL: Not listed in http://globin.bx.psu.edu.

This mutation causes a positive polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

This mutation is possible by a single base change in the DNA codon (TGC \rightarrow CGC).

 $\alpha T(12b-13)$ is more likely to be observed than $\alpha T12b$ because $\alpha 126Asp$ hinders cleavage by trypsin at $\alpha 127Lys$.

Table 4.3.13. The new tryptic peptides produced by the single Gln→Arg mutation in the α-chain Mass change: 28.043 Da (monoisotopic), 28.057 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
α54Gln→Arg Shimonoseki	αΤ6a αΤ6b	1,633.764 245.174	409.449	545.596	817.890	1,634.772 246.182

Notes.

All mass and m/z values are monoisotopic.

This mutation causes a positive polarity change in the α -chain.

Ions observed in the digest spectrum are shown in bold font.

This mutation is possible by a single base change in the DNA codon (CAG \rightarrow CGG).

Table 4.3.14. The tryptic peptides produced by the seven Gly→Arg mutations in the α-chain Mass change: 99.080 Da (monoisotopic), 99.136 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
α15Glv→Arg	αT3a	502.265				503.273
Ottawa, Siam	aT3b	146.106				147.113
α18Gly→Arg	αT4a	273.180				274.188
Handsworth	aT4b	1,372.637	344.167	458.554	687.326	1,373.645
α22Gly→Arg	αT4a	609.335		204.119	305.675	610.343
NL	aT4b	1,036.483	260.128	346.502	519.249	1,037.490
α25Gly→Arg	αT4a	958.462	240.623	320.495	480.239	959.470
NL	aT4b	687.355		230.126	344.685	688.363
α51Gly→Arg	αТба	1,418.673	355.676	473.899	710.344	1,419.681
Russ	aT6b	531.302			266.659	532.310
α57Gly→Arg	αT7a	174.112				175.120
L-Persian Gulf	αT7b	340.186			171.101	341.194
α59Gly→Arg	αT7a	368.192			185.104	369.200
Zurich- Albisrieden	aT7b	146.106				147.113

Notes.

All mass and m/z values are monoisotopic.

NL: Not listed in http://globin.bx.psu.edu.

This mutation causes a positive polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

All these mutations are possible by a single base change in the DNA codon.

In Russ, interference from $\alpha T3$ prevents observation of $\alpha T6b$.

Table 4.3.15. The new tryptic peptides produced by the ten His→Arg mutations in the α-chain Mass change: 19.042 Da (monoisotopic), 19.046 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
α20His→Arg	αT4a	401.239			201.627	402.247
Hobart	aT4b	1,164.541	292.143	389.188	583.278	1,165.549
α45His→Arg	αT6a	682.344		228.456	342.180	683.352
Fort de France	αТбb	1,187.594	297.906	396.872	594.805	1,188.601
$\alpha 50$ His \rightarrow Arg	αТба	1,281.614	321.411	428.213	641.815	1,282.622
Aichi	αТбb	588.323		197.116	295.169	589.331
α58His→Arg	αT7a	231.133				232.141
NL	aT7b	203.127				204.135
α72His→Arg	αΤ9a	1,099.599	275.907	367.541	550.807	1,100.606
Daneshgah-Tehran	aT9b	1,932.936	484.242	645.320	967.476	1,933.944
α87His→Arg	αТ9а	2,678.333	670.591	893.786	1,340.175	2,679.341
Iwata		2,679.992	671.006	894.339	1,341.004	2,681.000
	aT9b	354.202			178.109	355.209
α89His→Arg	αΤ9a	2,886.429	722.615	963.151	1,444.223	2,887.437
Tamano		2,888.212	723.061	963.745	1,445.114	2,889.220
	aT9b	146.106				147.113
α103His→Arg	αT12a	487.312			244.664	488.320
Contaldo	aT12b	2,516.346	630.094	839.790	1,259.181	2,517.354
		2,517.976	630.502	840.333	1,259.996	2,518.984
	αT12b-13	3,750.043	938.519	1,251.022	1,876.029	3,751.051
		3,752.435	939.117	1,251.820	1,877.225	3,753.443
α112His→Arg	αT12a	1,408.822	353.213	470.615	705.419	1,409.830
Strumica	aT12b	1,594.836	399.717	532.620	798.426	1,595.843
	αT12b-13	2,828.532	708.141	943.852	1,415.274	2,829.540
		2,830.275	708.577	944.433	1,416.145	2,831.283
α122His→Arg	αT12a	2,471.372	618.851	824.799	1,236.694	2,472.380
NL		2,472.982	619.253	825.335	1,237.499	2,473.990
	aT12b	532.286			267.151	533.294
	αT12b-13	1,765.983	442.503	589.669	883.999	1,766.990

Monoisotopic mass and m/z values are in normal font; average values are in italics. NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a positive polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

In $\alpha 103$, $\alpha 112$ and $\alpha 122$ His \rightarrow Arg, $\alpha T(12b-13)$ is more likely to occur than $\alpha T12b$ because $\alpha 126$ Asp hinders cleavage at $\alpha 127$ Lys.

All these mutations are possible a single base change in the DNA codon (CAC \rightarrow CGC).

Table 4.3.16. The	tryptic peptides produced by the eighteen Leu \rightarrow Arg mutations in the α -chain
	Mass change: 43.017 Da (monoisotopic), 43.028 Da (average)

Mutation Name	Peptide	(M+5H) ⁵⁺	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
α 2Leu \rightarrow Arg Chongqing	αT1a αT1b αT(1b-2)			320.511	259.135 480.262	274.188 517.262 959.516
α29Leu→Arg NL	αT4a αT4b			429.875	644.308	1,287.608 304.162
α34Leu→Arg Queens, Ogi	αT5a αT5b			227.459	227.118 340.685	453.228 680.362
α48Leu→Arg Montgomery	αT6a αT6b			361.507 271.813	541.757 407.215	1,082.506 813.422
α66Leu→Arg NL	αT9a αT9b		632.565 632.958	843.084 843.608	266.148 1,264.122 <i>1,264.909</i>	531.289 2,527.236 2,528.810
α80Leu→Arg Ann Arbor	αT9a αT9b		495.746	660.659 360.193	990.484 539.786	1,979.961 1,078.565
α83Leu→Arg NL	αT9a αT9b		563.534	751.043 269.809	1,126.061 404.210	2,251.114 807.411
α86Leu→Arg Moabit	αT9a αT9b		642.320 642.716	856.091 856.619	1,283.632 <i>1284.424</i> 246.638	2,566.257 2,567.841 492.268
α91Leu→Arg NL	αT10a αT10b					175.120 175.120
α100Leu→Arg NL	αT12a αT12b αT12b-13	818.451 818 971	714.388 714.847 1,022.812	952.182 952.793 1,363.414 1 364 279	1,427.768 <i>1,428.685</i> 2,044.617 2,045,915	175.120 2,854.529 2,856.363 4,088.226 4,090.822
α101Leu→Arg NL	αT12a αT12b αT12b-13	795.835	686.117 686.557 994.541	914.487 915.073 1,325.719	1,371.226 <i>1,372.106</i> 1,988.075	288.204 2,741.445 2,743.204 3,975.142
α105Leu→Arg NL	αT12a αT12b αT(12b-13)	796.339 707.798 <i>708.234</i>	995.172 576.071 884.495 885.041	1,326.559 243.468 767.759 1,178.991 1,179.718	1,989.335 364.698 1,151.134 1,767.983 1,769.073	3,977.662 728.388 2,301.261 3,534.958 3,537.139

Mutation Name	Peptide	$(M+5H)^{5+}$	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
α 106Leu \rightarrow Arg	αT12a			281.162	421.240	841.472
NL	aT12b		547.800	730.064	1,094.592	2,188.177
	αT12b-13	685.181	856.224	1,141.296	1,711.441	3,421.874
		685.602	856.751	1,141.998	1,712.493	3,423.979
α109Leu→Arg	αT12a			385.563	577.840	1,154.672
Suan-Dok, α2	aT12b		469.500	625.664	937.992	1,874.976
	αT12b-13	622.541	777.924	1,036.896	1,554.841	3,108.673
		622.923	778.401	1,037.533	1,555.795	3,110.582
α113Leu→Arg	αT12	602.932	753.413	1,004.215	1,505.819	3,010.630
San Antonio, α2		603.316	753.894	1,004.856	1,506.779	3,012.551
	αΤ12-13	849.672	1061.838	1,415.448	2,122.667	4,244.327
		850.208	1062.508	1,416.342	2,124.009	4,247.009
α125Leu→Arg	αT12a		692.633	923.175	1,384.258	2,767.508
Plasencia			693.078	923.768	1,385.148	2,769.288
	aT12b					262.140
	αT12b-13		374.715	499.284	748.423	1,495.837
α129Leu→Arg	αT12-13a	654.963	818.452	1,090.933	1,635.895	3,270.783
NL		655.384	818.978	1,091.634	1,636.947	3,272.887
	αT13a					322.188
	aT13b			331.526	496.785	992.563
α136Leu→Arg	αT12-13a	786.437	982.794	1,310.056	1,964.580	3,928.152
Toyama		786.937	983.419	1,310.889	1,965.830	3,930.652
	αT13a			327.191	490.283	979.558
	aT13b					335.193

Monoisotopic m/z values are in normal font; average values are in italics.

NL: Not listed in http://globin.bx.psu.edu.

This mutation causes a positive polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

All these mutations are possible by a single base change in the DNA codon.

With $\alpha 100$ and $\alpha 101$ Leu \rightarrow Arg, $\alpha T12b$ and $\alpha T(12b-13)$ contain Cys. With $\alpha 105$, $\alpha 106$, $\alpha 109$ and $\alpha 125$ Leu \rightarrow Arg, $\alpha T12a$ contains Cys. With all these mutations, $\alpha T(12b-13)$ is more likely to occur than $\alpha T12b$ because $\alpha 126$ Asp hinders cleavage at $\alpha 127$ Lys.

With $\alpha 113$ Leu \rightarrow Arg, $\alpha T12$ and $\alpha T(12-13)$ contain Cys. Here, $\alpha 114$ Pro inhibits cleavage at $\alpha 113$ Arg. Also, $\alpha T(12-13)$ is more likely to occur than $\alpha T12$ because $\alpha 126$ Asp hinders cleavage at $\alpha 127$ Lys.

With $\alpha 129$ and $\alpha 136$ Leu \rightarrow Arg, $\alpha T(12-13)a$ contains Cys. Also, $\alpha T(12-13a)$ is more likely to occur than $\alpha T13a$ because $\alpha 126$ Asp hinders cleavage at $\alpha 127$ Lys.

Table 4.3.17. The tryptic peptides produced by the eleven Lys \rightarrow Asn mutations in the α -chai	in
Mass change: -14.052 Da (monoisotopic), -14.070 Da (average)	

Mutation Name	Peptide	(M+5H) ⁵⁺	$(M+4H)^{4+}$	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
α7Lys→Asn Tatras	αΤ1-2		290.160	386.544	579.312	1157.617
α11Lys→Asn	αT2-3		240.878	320.835	480.749	960.490
Albany-Suma	αT1-3		418.478	557.634	835.947	1,670.887
α16Lys→Asn Beijing	αΤ3-4	406.597	507.994	676.989	1,014.980	2,028.953
α40Lys→Asn	αΤ5-6	575.282	718.850	958.131	1,436.692	2,872.377
Saratoga Springs, α Villiers le Bel, α 2	α1	575.656	719.318	958.755	1,437.629	2,874.250
α56Lys→Asn	αΤ6-7	440.614	550.515	733.684	1,100.023	2,199.037
Belliard		440.882	550.851	734.132	1,100.693	2,200.379
α60Lys→Asn Zambia	αΤ7-8				256.633	512.258
α61Lys→Asn J-Buda	αΤ8-9	622.913 623.297	778.389 778.869	1,037.516 <i>1,038.156</i>	1,555.770 <i>1,556.730</i>	3,110.533 <i>3,112.452</i>
α90Lys→Asn J-Broussais	αΤ9-10	651.131 651.531	813.662 814.162	1,084.546 1,085.214	1,626.315 1,627.316	3,251.623 <i>3,253.625</i>
α99Lys→Asn	αT11-12	751.403	939.002	1,251.666	1,876.996	3,752.984
Beziers, α1		751.882	939.600	1,252.464	1,878.193	3,755.378
	αΤ11-13	998.142 998.774	1,247.426 <i>1,248.215</i>	1,662.899 <i>1,663.951</i>	2,493.844 2,495.422	4,986.681 <i>4,989.836</i>
α127Lys→Asn Jackson	αΤ12-13	838.258 838.789	1,047.570 <i>1,048.234</i>	1,396.424 <i>1,397.309</i>	2,094.133 2,095.459	4,187.258 <i>4,189.911</i>
α139Lys→Asn	αT13-14		390.213	519.948	779.418	1,557.828
Fukui, α1	αT12-14	902.661	1,128.075	1,503.764	2,255.141	4,509.275

Monoisotopic mass and m/z values are in normal font; average values are in italics.

This mutation causes a negative polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font. All these mutations are possible by a single base change in the DNA codon.

Table 4.3.18. The tryptic peptide produced by a Lys→Ile mutation in the α-chain Mass change: -15.011 Da (monoisotopic), -15.015 Da (average)

Mutation Name	Peptide	(M+5H) ⁵⁺	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
α139Lys→Ile Novel	aT12-14	901.899 902.472	1,127.122 <i>1,127.838</i>	1,502.493 <i>1,503.449</i>	2,253.236 2,254.669	4,505.463 <i>4,508.330</i>
	αT13-14		389.973	519.628	778.938	1,556.869

Notes.

Monoisotopic mass and m/z values are in normal font; average values are in italics.

This mutation causes a negative polarity change in the α -chain.

Ions observed in the digest spectrum are shown in bold font.

Although there are eleven Lys in the α -chain, only α 139Lys \rightarrow Ile can occur by a single base change in the DNA codon (AAA \rightarrow ATA).

Table 4.3.19. The tryptic peptides produced by the eleven Lys→Thr mutations in the α-chain Mass change: -27.047 Da (monoisotopic), -27.069 Da (average)

Mutation Name	Peptide	(M+5H) ⁵⁺	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M+H) ⁺
α7Lys→Thr Nayarit, α2	αT1-2		286.911	382.212	572.815	1144.621
α11Lys→Thr	αT2-3	332.385	237.630	316.504	474.251	947.495
NL	αT1-3		415.229	553.302	829.450	1,657.891
α16Lys→Thr Boa Esperanca, α2	αΤ3-4	403.998	504.745	672.658	1,008.483	2,015.958
α40Lys→Thr	αΤ5-6	572.683	715.601	953.799	1,430.195	2,859.382
Pisa, α1		573.057	716.069	954.422	1,431.130	2,861.251
α56Lys→Thr	αΤ6-7	438.015	547.266	729.353	1,093.525	2,186.042
Thailand		<i>438.282</i>	<i>547.601</i>	729.799	1,094.194	2,187.380
α60Lys→Thr NL	αΤ7-8				250.135	499.263
α61Lys→Thr	αΤ8-9	620.314	775.140	1,033.184	1,549.273	3,097.538
J-Anatolia		620.697	775.619	<i>1,033.823</i>	<i>1,550.230</i>	<i>3,099.453</i>
α90Lys→Thr	αΤ9-10	648.532	810.413	1,080.215	1,619.818	3,238.628
J-Rajappen, α1		648.932	<i>810.912</i>	1,080.881	<i>1,620.817</i>	<i>3,240.626</i>

Mutation Name	Peptide	(M+5H) ⁵⁺	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
α99Lys→Thr NL	αT11-12	748.804 749.282	935.753 <i>936.351</i>	1,247.335 <i>1,248.132</i>	1,870.498 <i>1,871.693</i>	3,739.989 3,742.379
	αT11-13	995.543 996.174	1,244.177 <i>1,244.965</i>	1,658.567 1,659.618	2,487.347 2,488.923	4,973.685 <i>4,976.837</i>
α127Lys→Thr St. Claude	αΤ12-13	835.659 836.189	1,044.322 <i>1,044.984</i>	1,392.093 <i>1,392.976</i>	2,087.635 2,088.960	4,174.263 <i>4,176.912</i>
α139Lys→Thr	αT13-14		386.964	515.616	772.920	1,544.832
Tokoname	αT12-14	899.492 900.062	1,124.113 <i>1.124.825</i>	1,498.481 <i>1.499.431</i>	2,247.217 2.248.642	4,493.427 <i>4,496,276</i>

Monoisotopic m/z values are in normal font; average values are in italics.

NL: Not listed in http://globin.bx.psu.edu.

This mutation causes a negative polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

All these mutations are possible by a single base change in the DNA codon.

Table 4.3.20. The new tryptic peptides produced by the two Met→Arg mutations in the α-chain Mass change: 25.061 Da (monoisotopic), 24.987 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M+H) ⁺
α32Met→Arg NL	αT5a αT5b	174.112 939.507		314.177	470.761	175.120 940.514
α76Met→Arg Walpole	αΤ9	3,020.543 3,022.329	756.144 756.590	1,007.855 1,008.451	1,511.279 <i>1,512.172</i>	3,021.551 <i>3,023.337</i>

Notes.

Monoisotopic mass and m/z values are in normal font; average values are in italics. NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a positive polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font. Both mutations are possible by a single base change in the DNA codon (ATG \rightarrow AGG). Cleavage by trypsin at α 76Arg is inhibited by α 77Pro, hence variant α T9 is observed.

Mutation Name	Peptide	Mass (M)	$(M+4H)^{4+}$	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
α4Pro→Arg	αT1a	473.296			237.656	474.304
Goree	aT1b	332.170				333.177
	αT1b-2	774.424		259.149	338.220	775.431
α37Pro→Arg	αT5a	799.405		267.476	400.710	800.413
Boumerdes	aT5b	348.201				349.209
α44Pro→Arg	αT6a	585.291			293.653	586.299 (I)
Kawachi	aT6b	1,324.652		442.559	663.334	1,325.660
α77Pro→Arg	αΤ9a	1,696.820	425.213	566.615	849.418	1,697.828
GuiZhou	αT8-9a	1,824.915	457.237	609.313	913.465	1,825.923
	αΤ9b	1,375.721	344.938	459.581	688.868	1,376.729
α95Pro→Arg	αT11a	388.207				389.215
St Luke's, α1	αT10-11a	657.392		220.139	329.704	658.400 (I)
	aT11b	506.285			254.150	507.293
α114Pro→Arg	αT12a	1,658.965	415.749	553.996	830.491	1,659.973
Chiapas	aT12b	1,384.699	347.183	462.574	693.357	1,385.707
	αT12b-13	2,618.396	655.607	873.806	1,310.206	2,619.404
α119Pro→Arg	αT12a	2,204.214	552.061	735.746	1,103.115	2,205.222
NL	aT12b	839.450	210.870	280.825	420.733	840.458
	αT12b-13	2,073.147	519.295	692.057	1,037.581	2,074.155

Table 4.3.21. The new tryptic peptides produced by the seven Pro→Arg mutations in the α-chain Mass change: 59.048 Da (monoisotopic), 59.071 Da (average)

Notes.

All mass and m/z values are monoisotopic.

NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a positive polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font. I: Interference.

All these mutations are possible by a single base change in the DNA codon.

Peptide α T12a contains Cys.

Peptide $\alpha T(12b-13)$ is more likely to occur than $\alpha T12b$ because 126Asp hinders cleavage at 127Lys.

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
α49Ser→Arg	αT6a	1,194.582	299.653	399.202	598.299	1,195.590
Savaria, α2	aT6b	725.382		242.802	363.699	726.390
α84Ser→Arg	αТ9а	2,363.190	591.805	788.738	1,182.603	2,364.198
Etobicoke		2,364.666	592.174	789.230	1,183.341	2,365.674
	aT9b	719.372		240.798	360.694	720.379
α102Ser→Arg	αT12a	400.280			201.148	401.288
Manitoba I, $\alpha 2$	aT12b	2,653.405	664.359	885.476	1,327.710	2,654.413
Manitoba II, α1		2,655.117	664.787	886.047	1,328.567	2,656.125
Manitoba III, $\alpha 2$	αT12b-13	3,887.102	972.783	1,296.708	1,944.559	3,888.110
		3,889.576	973.402	1,297.533	1,945.796	3,890.584
α133Ser→Arg	αT13a	691.402		231.475	346.709	692.410
Val de Marne	αT12-13a	3,939.996	911.007	1,214.340	1,821.006	3,641.004
		3,642.328	911.590	1,215.117	1,822.172	3,643.336
	aT13b	647.385		216.803	324.701	648.393

Table 4.3.22. The tryptic peptides produced by the eleven Ser→Arg mutations in the α-chain Mass change: 69.069 Da (monoisotopic), 69.109 Da (average)

Notes.

Monoisotopic mass and m/z values are in normal font; average values are in italics.

NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a positive polarity change in the α -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

Although there are eleven Ser in the α -chain, only Savaria, Etobicoke, Manitoba and Val de Marne can occur by a single base change in the DNA codon (AGC \rightarrow CGC or AGA or AGG).

Table 4.3.23. The new tryptic peptides produced by the single Trp \rightarrow Arg mutation in the α -chai	n
Mass change: -29.978 Da (monoisotopic), -30.026 Da (average)	

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
α14Trp→Arg	αT3a	316.361				317.368
Evanston	aT3b	203.241				204.249

Notes.

All mass and m/z values are monoisotopic.

This mutation causes a positive polarity change in the alpha chain.

This mutation is possible by a single base change in the DNA codon (TGG \rightarrow CGG or AGG).

4.4. Tables to assist in searching for tryptic peptides produced from $\underline{\beta}$ -chain variants that differ in mass from normal by 0, ±1, ±3 and ±4 Da.

These tables were devised to assist in searching for tryptic peptides from β -chain variants that cannot be resolved from the normal β -chain when analysing the globin chains in heterozygotes. This situation arises when the normal and variant masses differ by $<\pm 6$ Da. Within these limits, there are seven mass changes $(0, \pm 1, \pm 3 \text{ and } \pm 4 \text{ Da})$ that are produced by a single amino acid change governed by a single base change in the codon. There are 89 such variants in the β -chain. Three types of mutation are given. First, there are mutations that do not involve Lys. These simply change the mass of the tryptic peptide and are listed in Table 4.4.1. Second, there are mutations that involve an amino acid change to Lys, which creates a new cleavage site, and hence two new peptides in the digest (Table 4.4.2). Third, there are mutations that involve an amino acid change from Lys, which removes a cleavage site (Table 4.4.3). The mutation Leu \rightarrow IIe produces neither a mass change nor a new cleavage site and thus cannot be detected by mass spectrometry. It is not included in the Tables. Of the 18 Leu in the β -chain, only 3 at β 68, 81 and 105 (CTC) can mutate to IIe (ATC) by a single base change in the codon.

The m/z values of the variant peptide ions are given in the Tables. For peptides below <u>mass</u> 2,300 Da only monoisotopic m/z values are given (normal font). For peptides above <u>mass</u> 2,300 Da average m/z values are given in italics beneath the monoisotopic values.

Monoisotopic masses are based on: C: 12.0 Da, H: 1.0078250 Da, N: 14.0030740 Da, O: 15.9949146 Da and S: 31.9720718 Da. Average masses are based on: C: 12.011 Da, H: 1.00794 Da, N: 14.00674 Da, O: 15.9994 Da and S: 32.066 Da.

NL: Not listed in http://globin.bx.psu.edu. I: interference.

 ΔM is the nominal mass change of the variant β -chain from normal (Da).

Variants that have been identified and m/z values that have been observed are shown in bold font.

All the mutations shown can occur by a single base change in the nucleotide codon.

Cleavage by trypsin at 95Lys is hindered by 94Asp giving mainly $\beta T(10-11)$. Cleavage at 144Lys is also slow giving both $\beta T(14-15)$, $\beta T14 \& \beta T15$. These cases are included in the tables.

The special cases of Alamo, β 19Asn \rightarrow Asp and Bunbury, β 94Asp \rightarrow Asn are also included in the tables.

Peptide	ΔM	Name	(M+3H) ³⁺	$(M+2H)^{2+}$	$(M+H)^+$
Mutation					
βΤ1					
β6Glu→Gln	-1	Machida	317.847	476.267	951.526
β7Glu→Gln)	-1	Bellevue III			
β4Thr→Pro	-4	Benin City	316.844	474.762	948.515
β 5Pro \rightarrow Thr	4	NL	319.507	478.757	956.505
βΤ2					
β 12Thr \rightarrow Pro	-4	NL	310.180	464.767	928.526
βT3					
β19Asn→Ile	-1	NL	438.574	657.357	1,313.707
β21Asp→Asn	-1	Cocody	438.566	657.345	1,313.681
β22Glu→Gln	-1	D-Iran		657.345	1,313.681
β26Glu→Gln	-1	Novel, King's Mill	438.566	657.345	1,313.681
β19Asn→Asp	1	Alamo, special case	743.722	1,115.080	2,229.152
0101 111		1 0157			

Table 4.4.1. The 44 mutations and m/z values of tryptic peptides that are produced as a result of single amino acid changes giving $<\pm 6$ Da change in the mass of the β -chain and do not involve Lys.

 β 19Asp in Alamo hinders cleavage at β 17Lys, causing the variant β T(2-3) peptide to occur in a similar way to the α T(10-11) peptide from the α -chain. Beware confusion with Nagasaki, β 17Lys \rightarrow Glu.

Peptide Mutation	ΔΜ	Name	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
$\begin{array}{c} p 14 \\ g \mathbf{20Cl} \\ 1 \\ \mathbf$	1	Veese	425 000	628 250	1 275 710
$\rho_{2}\rho_{3}$	1	V dasa	423.909	038.339	1,273.710
$p_{3\delta} = p_{3\delta} + p_{10}$	-4	Linköning	424.249	620.864	1,270.751
psoPro→mr	4	Linkoping	420.912	039.804	1,2/8./21
βT5					
β43Glu→Gln	-1	Hoshida	686.660	1,029.486	2,057.964
β47Asp→Asn	-1	G-Copenhagen			
β52Asp→Asn	-1	Osu Christiansborg		1,029.486	2,057.964
β57Asn→Ile	-1	NL	686.668	1,029.499	2,057.989
β57Asn→Asp	1	J-Daloa	687.316	1,030.470	2,059.932
β50Thr→Pro	-4	NL	685.656	1,027.981	2,054.953
β51Pro→Thr	4	NL	688.320	1,031.976	2,062.943
β 58Pro \rightarrow Thr	4	NL			
RTQ					
$\beta 73 \Lambda cn \rightarrow \Lambda cn$	_1	C-Acero Korle-Bu	556 074	83/ 058	1 668 007
$\beta 79A sp \rightarrow A sn$	-1	Voizu	550.774	054.750	1,000.707
$\beta R = 1$	NI	1 a12a	556 983	834 970	1 668 933
$\beta 80 \Delta sn \rightarrow \Delta sn$	1	Valley Park	557 630	835 942	1,600.235
	1	valley I ark	557.050	033.742	1,070.075
βT(8-9)					
β73Asp→Asn	-1	G-Accra, Korle-Bu	599.673	899.005	1,797.002
β79Asp→Asn	-1	Yaizu			
β80Asn→Ile	-1	NL	599.681	899.018	1,797.027
β80Asn→Asp	1	Valley Park	600.329	899.989	1,798.970
вт10					
β90Glu→Gln	-1	NL	474.235	710.849	1,420.690
β94Asp→Asn	-1	Bunbury, special case	474.235	710.849	1,420.690
Normal B 111		1 1	3/6.193	563.786	1,126.565
The Bunbury muta	ation al	llows cleavage at 95Lys to	give the vari	ant $\beta T10$ and	normal β TTT peptides.
β84Thr→Pro	-4	NL N. II	473.231	709.343	1,417.679
β8/Thr→Pro	-4	Valletta	473.231	709.343	1,417.679
βT11					
β99Asp→Asn	-1	Kempsey	375.865	563.294	1,125.581
β101Glu→Gln	-1	Rush	375.865	563.294	1,125.581
β102Asn→Ile	-1	NL	375.874	563.307	1,125.606
β102Asn→Asp	1	NL	376.521	564.278	1,127.549
$\beta 100 Pro \rightarrow Thr$	4	Bellevue II	377.525	565.784	1,130.559

Mutation Peptides βT(10-11)	ΔΜ	Name	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
β90Glu→Gln	-1	NL	632.815	843.417	1,264.622	2,528.236
			633.216	843.952	1,265.424	2,529.840
β99Asp→Asn	-1	Kempsey	632.815	843.417	1,264.622	2,528.236
β101Glu→Gln	-1	Rush				
β102Asn→Ile	-1	NL	632.821	843.425	1,264.634	2,528.261
			633.226	843.965	1,265.444	2,529.880
β102Asn→Asp	1	NL	633.307	844.073	1,265.606	2,530.204
			633.708	844.608	1,266.409	2,531.809
β84Thr→Pro	-4	NL	632.062	842.413	1,263.116	2,525.225
			632.465	842.951	1,263.922	2,526.836
β87Thr→Pro	-4	Valletta	632.062	842.413	1,263.116	2,525.225
			632.465	842.951	1,263.922	2,526.836
$\beta 100 Pro \rightarrow Thr$	4	Bellevue II	634.060	845.077	1,267.111	2,533.215
			634.459	845.610	1,267.911	2,534.813
βT12						
β108Asn→Ile	-1	Schlierbach		573.677	860.011	1,719.014
β108Asn→Asp	1	Yoshizuka		574.324	860.983	1,720.957
βT13						
β121Glu→Gln	-1	D-Punjab, D-Los An	geles	459.911	689.362	1,377.717
β127Gln→Glu	1	Complutense		460.567	690.346	1,379.685
β131Gln→Glu	1	Camden			690.346	1,379.685
β 123Thr \rightarrow Pro	-4	NL		458.907	687.857	1,374.706
β 124Pro \rightarrow Thr	4	NL		461.570	691.852	1,382.696
β 125Pro \rightarrow Thr	4	NL				
вт14						
β139Asn→Ile	-1	NL		383.577	574.862	1.148.716
β139Asn→Asp	1	Geelong		384.225	575.833	1,150.658
BT(14-15)						
$\beta 139Asn \rightarrow Ile$	-1	NL	362,965	483 618	724 923	1 448 838
$\beta 139Asn \rightarrow Asn$	1	Geelong	363 451	484 265	725 894	1 450 781
provinsi viisp	1	000000	505.751	101.205	120.074	1,120.701

Table 4.4.2. The pairs of new peptides resulting from the twelve single amino acid changes that give $<\pm 6$ Da change in the β -chain mass and involve mutation to Lys, thus creating a new cleavage site. These mutations give a significant increase in positive charge and are readily detected by ce-HPLC and IEF. The presence of these new peptide ions at their predicted m/z values identifies the mutation.

Mutation Peptides	ΔΜ	Name	(M+3H) ³⁺	$(M+2H)^{2+}$	$(M+H)^+$
β6Glu→Lys βT1a, 1VHLTPK	-1	С		347.717	694.425
β11b, 7ЕК				138.582	276.156
β7Glu→Lvs	-1	G-Siriraj			
βT1a, 1VHLTPEK βT1b, 8K		Ū	275.161	412.238 (I)	823.468 147.113
βT(a+b), 1VHLTPEKK			317.859	476.285 (I)	951.563
β22Glu→Lys	-1	E-Saskatoon			
β T3a, 18VNVDK	-			287.664	574.320 (I)
βT3b, 23VGGEALGR			253.477	379.712	758.416
β T3(a+b), 18VNVDKV(GGEA	LGR	438.578	657.363	1,313.718
β26Glu→Lvs	-1	Е			
βT3a, 18VNVDEVGGK			306.163	458.741	916.474
βT3b, 27ALGR				208.635	416.262
β39Gln→Lys	0	Alabama			
βT4a, 31LLVVYPWTK βT4b, 40R			373.559	559.835	1,118.661 175.120
AAChu Mara	1	Novel Househour	h		
P45GIu→Lys RT5a 41FFK	-1	Novel, Hornchurt		221 129	441 250
βT5b, 44SFGDLSTPDA	VMG	NPK	545.928	818.388 (I)	1,635.769
Q55Mat NI va	2	Motoro			
p_{33} Met $\rightarrow Lys$ BT5 a_{41} FFFFFCDI STD	-3 NVK		553 035	830 300	1 650 701
BT5h 56GNPK		x	139.082	208 119 (T)	415 231
			100.002	200.117 (1)	110.201
β90Glu→Lys	-1	Agenogi			
βT10a, 83GTFATLSK			275.489	412.730	824.452
βT10b, 91LHCDK			205.769	308.150	615.292
(βT(10b-11), 91LHCDK		DPENFR	574.951	861.923	1,722.839
β 101Glu \rightarrow Lys		British Columbia	704 259	1.056.024	2 111 060
$\beta I(10-11a), 83GIFAILS$	BELH	<u>DK</u> LHVDPK	704.358	1,056.034	2,111.060
βT11b, 102NFR			230.007	218.619	436.231
				-	-
β121Glu→Lys	-1	O-Arab			1 47 1 1 2
β113a, 121K	vov		417 005	(05 000	147.113
$p_{1130}, 122FTPPVQAA$	YQK	VOV	417.225 450.022 (D	025.555	1,249.058
$p_{113(a+b)}, 121Kr 1PPV$	'QAA	זעה	439.922 (1)	007.300	1,377.733

Mutation	$\Delta \mathbf{M}$	Name	$(M+3H)^{3+}$	$(M+2H)^{2+}$	$(M+H)^+$
Peptides					
β127Gln→Lys	0	Brest			
βT13a, 121EFTPPVK			273.154	409.227	817.446
βT13b, 128AAYQK			194.108	290.659	580.310
β131Gln→Lys	0	Shelby			
βT13a, 121EFTPPVQA	AYK		417.553	625.825	1,250.642
βT13b, 132K					147.113
β T13(a+b), 121EFTPPV	QAAY	KK	460.251	689.872 (I)	1,378.737 (I)

Table 4.4.3. The 30 tryptic peptides and their m/z values that result from a single amino acid change giving $<\pm 6$ Da change in the mass of the β -chain and involve a mutation from Lys. Thus, a tryptic cleavage site is eliminated and two adjacent tryptic peptides are combined. These mutations give a significant increase in negative charge and are readily detected by ce-HPLC and IEF. The presence of the new peptide ions at their predicted m/z values identifies the mutation. Three of the Lys at $\beta 66$, 120 and 132 (AAA) cannot mutate to Met (ATG) by a single base change in the codon.

Peptide	ΔM	Name	$(M+4H)^{4+}$	$(M+3H)^{3+}$	$(M+2H)^{2+}$	$(M+H)^+$
Mutation						
βT(1-2)						
β8Lys→Gln	0	J-Luhe	467.250	622.664	933.492	1,865.976
β8Lys→Glu	1	N-Timone	467.496	622.992	933.984	1,866.960
β8Lys→Met	3	Nakano	467.995	623.658	934.983	1,868.958
βT(2-3)						
β17Lys→Gln	0	Nikosia	557.787	743.382	1,114.569	2,228.131
β17Lys→Glu	1	Nagasaki	558.035	743.710	1,115.061	2,229.115
β17Lys→Met	3	NL	558.534	744.376	1,116.060	2,231.113
βT(5-6)						
β59Lys→Gln	0	NL	572.275	762.697	1,143.542	2,286.075
β59Lys→Glu	1	I-High Wycombe	572.521	763.025	1,144.034	2,287.059
β59Lys→Met	3	NL	573.020	763.691	1,145.032	2,289.057
βT(6-7)						
β61Lys→Gln	0	Pocos de Caldas	160.595	213.791	320.183	639.358
β61Lys→Glu	1	N-Seattle	160.841	214.119	320.675	640.342
β61Lys→Met	3	Bologna	161.341	214.785	321.674	642.340
βT(7-8)						
β65Lys→Gln	0	J-Cairo		180.768	270.649	540.289
β65Lys→Glu	1	NL		181.096	271.141	541.273
β65Lys→Met	3	J-Antakya		181.762	272.140	543.271

Peptide Mutation BT(8-9)	ΔΜ	Name	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
$\beta f (0, y)$ $\beta 6 6 L v s \rightarrow G ln$	0	NL	450.24	599,989	899.479	1.797.950
β66Lys→Glu	1	I-Toulouse	450.489	600.317	899.971	1,798.934
βT(9-10)						
β82Lys→Gln	0	Tsurumai	768.883	1,024.842	1,536.759	3,072.510
			769.367	1,025.486	1,537.725	3,074.443
			783.629	1,044.503	1,566.251	3,131.495)
β82Lys→Glu	1	Gambara	769.129 769.613	1,025.170 1,025,814	1,537.251 1,538,218	3,073.494 3,075,427
0007	•			1,020.017	1,550.210	2,075.127
β82Lys→Met	3	Helsinki	769.629	1,025.836	1,538.250	3,075.492
OTT(0 10 11)			//0.134	1,026.509	1,539.259	3,077.510
β1(9-10-11)	0		1 0 45 770	1 20 4 00 4	2 000 522	4 100 050
β82Lys→Gln	0	Tsurumai	1,045.770	1,394.024	2,090.532	4,180.056
		a 1	1,046.422	1,394.894	2,091.830	4,182.005
β82Lys→Glu	1	Gambara	1,046.016	1,394.352	2,091.024	4,181.040
			1,040.008	1,395.222	2,092.329	4,183.030
β82Lys→Met	3	Helsinki	1,046.515	1,395.018	2,092.023	4,183.038
			1,047.189	1,395.916	2,093.370	4,185.733
βT(10-11)						
β95Lys→Gln	0	NL	633.052	843.733	1,265.096	2,529.183
			633.451	844.266	1,265.895	2,530.781
β95Lys→Glu	1	N-Baltimore	633.298	844.061	1,265.588	2,530.167
			633.697	844.594	1,266.387	2,531.766
β95Lys→Met	3	J-Cordoba	633.797	844.727	1,266.586	2,532.165
			634.218	845.288	1,267.429	2,533.849
βT(12-13)						
β120Lys→Gln	0	Takamatsu	770.661	1,027.212	1,540.313	3,079.619
			771.159	1,027.876	1,541.310	3,081.613
β120Lys→Glu	1	Hijiyama	770.907	1,027.540	1,540.806	3,080.603
			771.405	1,028.205	1,541.803	3,082.598
βT(13-14)						
β132Lys→Gln	0	K-Woolwich	628.086	837.112 (I)	1,255.164	2,509.320
			628.470	837.624	1,255.932	2,510.856
β132Lys→Glu	1	Takasago	628.332	837.440	1,255.656	2,510.304
		C	628.716	837.952	1,256.425	2,511.841
βT(13-14-15)						
β132Lys→Gln	0	K-Woolwich	703.117	937.153	1,405.225	2,809.443
			703.549	937.730	1,406.091	2,811.174
β132Lys→Glu	1	Takasago	703.363	937.481	1,405.717	2,810.427
-		2	703.796	938.058	1,406.583	2,812.158
βT(14-15)						
β144Lys→Gln	0	NL	363.196	483.925	725.384	1,449.760
β144Lys→Glu	1	Mito	363.442	484.253	725.876	1,450.744
β144Lys→Met	3	Barbizon	363.941	484.919	726.875	1,452.742

4.5. Tables to assist in searching for tryptic peptides from <u>β-chain</u> variants that involve Arg or Lys and give a mass change >±6 Da from normal (excluding Arg↔Lys).

These tables were devised to assist in systematically searching tryptic digest spectra for variant β -chain peptides from mutations that involve Arg or Lys (excluding Arg \leftrightarrow Lys) and the mass change of the variant is >±6 Da from normal. These mutations either create a new tryptic cleavage site and hence cut the peptide containing the mutation into two new smaller peptides or abolish one of the cleavage sites causing two adjacent peptides to be combined into one new larger peptide. Since

the masses of such peptides are not simply related to the masses of the corresponding normal peptides, it is helpful to have tables available that give the m/z values of these new peptides. The following 20 tables list the m/zratios of all the β -chain tryptic peptides that involve mutations to or from Arg and Lys, give a mass change greater than ± 6 Da and which are governed by a single base change in the DNA codon.

	Nominal Mass	Number of	
Mutation	Change (Da)	Mutations	Table
Arg→Gly	-99	3	4.5.1
Arg→Met	-25	3	4.5.2
Arg→Ser	-69	3	4.5.3
Arg→Thr	-55	3	4.5.4
Arg→Trp	30	3	4.5.5
Asn→Lys	14	6	4.5.6
Cys→Arg	53	2	4.5.7
Gln→Arg	28	3	4.5.8
Gly→Arg	99	13	4.5.9
His→Arg	19	9	4.5.10
Leu→Arg	43	18	4.5.11
Lys→Asn	-14	11	4.5.12
Lys→Ile	-15	3	4.5.13
Lys→Thr	-27	11	4.5.14
Met→Arg	25	1	4.5.15
Pro→Arg	59	7	4.5.16
Ser→Arg	69	2	4.5.17
Thr→Arg	55	1	4.5.18
Thr→Lys	27	1 or 2	4.5.19
Trp→Arg	-30	2	4.5.20

Table 4.5.1. The new tryptic peptides produced by the three Arg \rightarrow Gly mutations in the β -chain
Mass change: -99.080 Da (monoisotopic), -99.136 Da (average)

Mutation Name	Peptide	(M+5H) ⁵⁺	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
β30Arg→Gly	βT(3-4)	495.065	618.579	824.436	1236.151	2,471.293
NL		<i>495.367</i>	618.957	824.940	<i>1,236.906</i>	2,472.805
β40Arg→Gly	βT(4-5)	643.922	804.650	1,072.531	1,608.292	3,215.576
NL		644.340	805.174	1,073.229	1,609.339	3,217.670
β104Arg→Gly	βT(11-12)	546.494	682.866	9,10.152	1,364.724	2,728.440
Nimes		546.848	683.309	<i>9,10.742</i>	<i>1,365.609</i>	2,730.210
	βT(10-12)	827.025 827.564	1,033.530 <i>1,034.203</i>	1,377.703 <i>1,378.602</i>	2,066.051 2,067.399	4,131.095 <i>4,133.789</i>

Monoisotopic m/z values are in normal font; average values are in italics.

NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a negative polarity change in the β -chain.

All these mutations can occur by a single base change in the DNA codon (AGG \rightarrow GGG).

With β 30Arg \rightarrow Gly, AGG \rightarrow GGG probably abolishes splicing at the normal 5' splice. Variant β -chain was not detected, i.e. β^0 -thal.

With $\beta 104\text{Arg} \rightarrow \text{Gly}$, peptides $\beta T(11-12)$ and $\beta T(10-12)$ contain Cys. $\beta T(10-12)$ is more likely to be observed than $\beta T(11-12)$ because $\beta 94\text{Asp}$ hinders cleavage at $\beta 95\text{Lys}$

Table 4.5.2. The new tryptic peptides produced by the three Arg→Met mutations in the β-chain Mass change: -25.061 Da (monoisotopic), -24.989 Da (average)

Mutation Name	Peptide	(M+5H) ⁵⁺	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M+H) ⁺
β30Arg→Met	βT(3-4)	509.869	637.084	849.109	1,273.160	2,545.312
NL		510.197	<i>637.494</i>	849.656	<i>1,273.980</i>	2, <i>546.951</i>
β40Arg→Met	βT(4-5)	658.725	823.155	1,097.204	1,645.302	3,289.595
Taipei-Tien		659.170	823.710	<i>1,097.944</i>	<i>1,646.412</i>	<i>3,291.817</i>
β104Arg→Met	βT(11-12)	561.298	701.371	934.825	1,401.733	2,802.459
Bad Salzuflen		561.678	<i>701.845</i>	935.458	<i>1,402.682</i>	2,804.357
	βT(10-12)	841.829 842.394	1,052.034 1,052.740	1,402.376 <i>1,403.317</i>	2,103.061 2, <i>104.472</i>	4,205.114 <i>4,207.936</i>

Notes.

Monoisotopic m/z values are in normal font; average values are in italics.

NL: Not listed in http://globin.bx.psu.edu.

This mutation causes a negative polarity change in the β -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

All these mutations can occcur by a single base change in the DNA codon (AGG \rightarrow ATG).

With $\beta 104$ (Arg \rightarrow Met), peptides $\beta T(11-12)$ and $\beta T(10-12)$ contain Cys. $\beta T(10-12)$ is more likely to be observed than $\beta T(11-12)$ because $\beta 94$ Asp hinders cleavage by trypsin at $\beta 95$ Lys.

Table 4.5.3. The new tryptic peptides produced by the three Arg→Ser mutations in the β-chain Mass change: -69.069 Da (monoisotopic), -69.109 Da (average)

Mutation Name	Peptide	(M+5H) ⁵⁺	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
β30Arg→Ser	βT(3-4)	501.067	626.082	834.440	1,251.156	2,501.304
Tacoma		501.373	626.464	<i>834.949</i>	<i>1,251.919</i>	2,502.831
β40Arg→Ser	βT(4-5)	649.924	812.153	1,082.534	1,623.297	3,245.587
Austin		650.346	812.680	<i>1,083.238</i>	<i>1,624.352</i>	<i>3,247.697</i>
β104Arg→Ser	βT(11-12)	552.496	690.368	920.155	1,379.729	2,758.450
Camperdown		552.854	690.815	<i>920.751</i>	<i>1,380.622</i>	2,760.237
	βT(10-12)	833.027 <i>833.570</i>	1041.032 <i>1041.710</i>	1,387.707(I) 1,388.611	2,081.057 2,082.412	4,161.105 <i>4,163.816</i>

Monoisotopic m/z values are in normal font; average values are in italics.

This mutation causes a negative polarity change in the β -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

All these mutations can occur by a single base change in the DNA codon (AGG \rightarrow AGT or AGC). With Tacoma heterozygotes, variant $\beta T(3-4)^{2+}$ (m/z 1,251.156) should be observed together with normal $\beta T3^+$ (1,314.675) and $\beta T4^+$ (m/z 1,274.73) at reduced intensity relative to $\alpha T5^+$ m/z 1071.60. With Camperdown, $\beta T(11-12)$ and $\beta T(10-12)$ contain Cys. $\beta T(10-12)$ is more likely to be observed than $\beta T(11-12)$ because $\beta 94$ Asp hinders cleavage at $\beta 95$ Lys. See also notes on Sherwood Forest below.

Table 4.5.4. The new tryptic peptides produced by the three Arg \rightarrow Thr mutations in the β -chain Mass change: -55.053 Da (monoisotopic), -55.083 Da (average)

Mutation Name	Peptide	(M+5H) ⁵⁺	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
β30Arg→Thr Munroe	βT(3-4)	503.870 504.178	629.586 629.970	839.112 8 <i>39.625</i>	1,258.164 <i>1,258.933</i>	2,515.320 2,516.858
β40Arg→Thr NL	βT(4-5)	652.727 653.151	815.657 <i>816.187</i>	1,087.206 <i>1,087.913</i>	1,630.305 <i>1,631.366</i>	3,259.603 <i>3,261.724</i>
β104Arg→Thr	βT(11-12)	555.299	693.872	924.827	1,386.737	2,772.466
Sherwood Forest		555.659	694.322	925.426	1,387.636	2,774.26
Reduce	d βT(10-12)	835.830	1,044.536	1,392.379	2,088.064	4,175.121
	-	836.375	1,045.217	1,393.286	2,089.425	4,177.843
With -S-S- bond	l. βT(10-12)	835.427	1,044.032	1,391.707	2,087.057	4,173.105
	• • •	835.972	1,044.713	1,392.614	2,088.417	4,175.827

Notes.

Monoisotopic m/z values are in normal font; average values are in italics.

NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a negative polarity change in the β -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

All these mutations can occur by a single base change in the DNA codon (AGG \rightarrow ACG).

With Sherwood Forest, $\beta T(10-12)$ is observed because $\beta 94Asp$ hinders cleavage at $\beta 95Lys$. This peptide contains both β -chain Cys, which form an intra-chain disulphide bond during incubation of the digest.

Table 4.5.5. The tryptic peptides produced by the three Arg \rightarrow Trp mutations in the β -chain Mass change: 29.978 Da (monoisotopic), 30.025 Da (average)

Mutation Name	Peptide	(M+5H) ⁵⁺	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
β30Arg→Trp	βT(3-4)	520.877	650.844	867.456	1,300.680	2,600.351
NL		521.200	651.247	867.994	<i>1,301.487</i>	2,601.966
β40Arg→Trp	βT(4-5)	669.733	836.914	1,115.550	1,672.821	3,344.634
NL		<i>670.173</i>	<i>837.464</i>	<i>1,116.283</i>	<i>1,673.920</i>	<i>3,346.832</i>
β104Arg→Trp	βT(11-12)	572.306	715.130	953.171	1,429.253	2,857.498
Sainte Eugenie		572.681	<i>715.599</i>	<i>953.796</i>	<i>1,430.190</i>	2,859.372
	βT(10-12)	852.837 853.397	1,065.794 1,066.494	1,420.723 <i>1,421.656</i>	2,130.580 2,131.979	4,260.153 <i>4,262.951</i>

Notes.

Monoisotopic m/z values are in normal font; average values are in italics.

NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a negative polarity change in the β -chain.

All these mutations can occur by a single base change in the DNA codon (AGG \rightarrow TGG).

With Sainte Eugenie, peptides $\beta T(11-12)$ and $\beta T(10-12)$ contain Cys. $\beta T(10-12)$ is more likely to be observed than $\beta T(11-12)$ because $\beta 94$ Asp hinders cleavage at $\beta 95$ Lys.

Table 4.5.6. The tryptic peptides produced by the six Asn→Lys mutations in the β-chain Mass change: 14.052 Da (monoisotopic), 14.070 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M+H) ⁺
β19Asn→Lys	βТ3а	245.174				246.182
D-Ouled Rabah	βT3b	1,100.546	276.144	367.857	551.281	1,101.554
	βΤ3	1,327.710		443.578	664.863	1,328.717
β57Asn→Lys	βΤ5α	1,846.845	462.719	616.623	924.430	1,847.853
G-Ferrara	βТ5b	243.158				244.166
	βΤ5	2,071.993	519.006	691.672	1037.004	2,073.000
β80Asn→Lys	βТ9а	1,441.757	361.447	481.593	721.886	1,442.764
G-Szuhu, Gigu	βT9b	259.190				260.197
	β T 9	1,682.936	421.742	561.986	842.476	1,683.943
β102Asn→Lys	βT11a	836.439		279.821	419.227	837.447
Richmond	$\beta T(10-11a)$	2,239.094	560.781	747.373	1120.555	2,240.102
	βΤ11b	321.180				322.188
β108Asn→Lys	βT12a	429.295			215.655	430.303
Presbyterian	βT12b	1,321.733	331.441	441.585	661.874	1,322.741
β139Asn→Lys	βT14 a	642.407		215.143	322.211	643.414
Hinsdale	βT14b	538.323			270.169	539.331
	βT(14b-15)	838.445		280.489	420.230	839.453

Notes.

All masses and m/z values are monoisotopic.

This mutation causes a positive polarity change in the β -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

All these mutations can occur by a single base change in the DNA codon.

With D-Ouled Rabah, cleavage is slow at 19Lys. Hence abundance of β T3b peptide is low. Mechanism appears to be similar to slow cleavage by trypsin at 92Arg in the normal α -chain

 $(\beta-17\underline{KVKVDEV}$ - is similar to α -90<u>KLRVD</u>PV-). If necessary, prove the mutation occurs at 19Lys by tandem MS on β T3²⁺ ions. The variant β T3²⁺ ion needs higher collision energy (25V) than the normal β T3²⁺ ion (19V) using argon collision gas.

With G-Ferrara, β 58Pro inhibits cleavage at β 57Lys. Hence variant β T5 is observed.

With G-Szuhu, β 79Asp is likely to hinder cleavage at β 80Lys. Hence variant β T9 is likely to be observed.

In Richmond and Presbyterian, peptides $\beta T(10-11)a$ and $\beta T12b$ respectively contain Cys.

With Richmond, variant $\beta T(10-11)a$ is more likely to be observed than $\beta T11a$ because $\beta 94Asp$ hinders cleavage at $\beta 95Lys$.

Table 4.5.7. The new tryptic peptides produced by the two	Cys \rightarrow Arg mutations in the β -chain
Mass change: 53.092 Da (monoisotopic),	53.043 Da (average)

Mutation Name	Peptide	Mass (M)	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
β93Cys→Arg	βT10a	1,230.636	411.220	616.326	1,231.644
Okazaki	βT10b	261.133			262.140
	βT(10b-11)	1,368.679	457.234	685.347	1,369.686
β112Cys→Arg	βT12a	882.565	295.196	442.290	883.573
Indianapolis	βT12b	907.503	303.509	454.759	908.511

All mass and m/z values are monoisotopic.

This mutation causes a positive polarity change in the β -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

Both mutations can occur by a single base change in the DNA codon (TGT \rightarrow CGT).

With Okazaki, the β T(10b-11) peptide occurs in 30-min digest because cleavage at β 95Lys is hindered by β 94Asp.

Table 4.5.8. The tryptic peptides produced by the three Gln→Arg mutations in theβ-chain Mass change: 28.043 Da (monoisotopic), 28.057 Da (average)

Mutation Name	Peptide	Mass (M)	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
β39Gln→Arg Tianshui	βT4a βT4b	1,145.660 174.112	382.894	573.838	1,146.668 175.120
β127Gln→Arg Dieppe	βT13a βT13b	844.444 579.302	282.489	423.230 290.659	845.452 580.310
β131Gln→Arg Sarrebourg	βT13a βT13b	1,277.640 146.106	426.888	639.828	1,278.648 147.113

Notes.

All mass and m/z values are monoisotopic.

This mutation causes a positive polarity change in the β -chain.

All these mutations can occur by a single base change in the DNA codon (CAG \rightarrow CGG).

Table 4.5.9. The tryptic peptides produced by the thirteen Gly \rightarrow Arg mutations in the β -chain Mass change: 99.080 Da (monoisotopic), 99.136 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
β16Gly→Arg D-Bushman	βT2a βT2b	902.497 146.106		301.840	452.257	903.505 147.113
β24Gly→Arg Riverdale-Bronx	βТ3а βТ3b	829.429 601.318		277.484 201.447	415.723 301.667	830.437 602.326
β25Gly→Arg G-Taiwan-Ami	βТЗа βТЗЬ	886.451 544.297		296.491	444.233 273.156	887.459 545.305
β29Gly→Arg NL	βТЗа βТЗЬ	1256.636 174.112	315.167	419.887	629.326	1,257.644 175.120
β46Gly→Arg Gainesville-GA	βТ5а βТ5b	831.392 1,343.639	336.918	278.138 448.888	416.704 672.827	832.399 1,344.647
β56Gly→Arg Hamadan	βТ5а βТ5b	1,817.829 357.201	455.465	606.951	909.923 179.608	1,818.837 358.209
β64Gly→Arg NL	βT7a βT7b	382.208 146.106			192.112	383.216 147.113
β69Gly→Arg Kenitra	βТ9а βТ9b	386.264 1,399.710	350.935	467.578	194.140 700.863	387.272 1,400.717
β74Gly→Arg Aalborg	βТ9а βТ9b	863.450 922.524		288.825 308.516	432.733 462.270	864.458 923.531
β83Gly→Arg Muskegon	βT10a βT10b βT(10b-11)	174.112 1,363.644 2,471.190	341.919 618.805	455.556 824.738	682.830 1,236.603	175.120 1,364.652 2,472.198
β107Gly→Arg Burke	βT12a βT12b	400.280 1,435.776	359.952	479.600	201.148 718.896	401.288 1,436.784
β119Gly→Arg Angoulime	βT12a βT12b	1,689.950 146.106	423.495	564.325	845.983	1,690.958 147.113
β 136Gly \rightarrow Arg 'tlangeland	βT14a βT14b βT(14b-15)	443.286 822.471 1,122.593	281.656	275.165 375.206	222.651 412.243 562.305	444.293 823.479 1,123.601

Notes.

All mass and m/z values are monoisotopic. NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a positive polarity change in the β -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font. All these mutations can occur by a single base change in the DNA codon.

Peptides β T10b, β T(10b-11), β T12b (Burke) and β T12a (NL) contain Cys.

Table 4.5.10. The new tryptic peptides produced by the nine His→Arg mutations in the β-chain Mass change: 19.042 Da (monoisotopic), 19.046 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M+H) ⁺
β2His→Arg Deer Lodge	βT1a βT1b	273.180 715.375		239.466	358.695	274.188 716.383
β63His→Arg Zurich	βT7a βT7b βT(7b-8)	245.149 203.127 331.222				246.157 204.135 332.230
β77His→Arg Costa Rica	βТ9а βТ9b	1,104.593 601.344	277.156	369.205 201.456	553.304 301.680	1,105.601 602.351
β92His→Arg Mozhaisk	βT10a βT10b βT(10b-11)	1,093.577 364.142 1 471 688	274.402 368.930	365.533 491 570	547.796 736.852	1,094.585 365.150 1 472 696
β97His→Arg NL	βT11a βT(10-11a) βT11b	287.196 1,689.851 875.414	423.471	564.291 292.812	845.933 438.715	288.204 1,690.859 876.422
β116His→Arg Sfax	βT12a βT12b	1,268.764 487.254	318.199	423.929	635.390 244.635	1,269.772 488.262
β117His→Arg P-Galveston	βT12a βT12b	1,405.823 350.195	352.464	469.615	703.919	1,406.831 351.203
β143His→Arg Abruzzo	βT14a βT14b βT(14b-15)	1,039.614 146.106 446.228	260.911	347.546	520.815 224.122	1,040.622 147.113 447.236
β146His→Arg Cochin-Port Royal	βT15 βT(14-15)	337.175 1,467.831	367.966	490.285	734.923	338.183 1,468.839

Notes.

All mass and m/z values are monoisotopic.

NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a positive polarity change in the β -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

All these mutations can occur by a single base change in the DNA codon.

Peptides β T10b and β T(10b-11) in Mozhaisk; β T(10-11a) in β 97His \rightarrow Arg; β T12a in Sfax and P-Galveston contain Cys.

Table 4.5.11. The tryptic peptides produced by the eighteen Leu→Arg mutations in the β-chain Mass change: 43.017 Da (monoisotopic), 43.028 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
β3Leu→Arg NL	βT1a βT1b	410.239 602.291		201.772	206.127 302.153	411.247 603.299
β14Leu→Arg Sogn	βТ2а βТ2b	603.334 389.206		202.119	302.675 195.611	604.342 390.214
β28Leu→Arg Chesterfield	βТ3а βТ3b	1,143.552 231.133	286.896	382.192	572.784	1,144.560 232.141
β31Leu→Arg Hakkari	βT4a βT4b	174.112 1,160.634	291.166	387.886	581.325	175.120 1,161.642
β32Leu→Arg Castilla	βT4a βT4b	287.196 1,047.550	262.895	350.191	524.783	288.204 1,048.558
β48Leu→Arg Okaloosa	βТ5а βТ5b	1,003.440 1,115.528	251.868 279.890	335.488 372.851	502.728 558.772	1,004.448 1,116.536
β68Leu→Arg NL	βТ9а βТ9b	273.180 1,456.731	365.191	486.585	729.373	274.188 1,457.739
β75Leu→Arg Pasadena	βТ9а βТ9b	920.472 809.440	231.126 203.368	307.832 270.821	461.244 405.728	921.479 810.447
β78Leu→Arg Quin-Hai	βТ9а βТ9Ь	1,241.652 488.260	311.421	414.892	621.834 245.138	1,242.660 489.267
β81Leu→Arg Baylor	βТ9а βТ9b	1,583.806 146.106	396.959	528.943	792.911	1,584.813 147.113
β88Leu→Arg Boras	βT10a βT10b βT(10b-11)	651.334 830.359 1,937.905	485.484	218.119 277.794 646.976	326.675 416.187 969.961	652.342 831.367 1,938.913
β91Leu→Arg Caribbean	βT10a βT10b βT(10b-11)	980.493 501.201 1,608.747	403.195	327.839 537.257 (I)	491.254 251.608 805.381	981.501 502.208 16,09.755
β96Leu→Arg NL	βT11a βT(10-11a) βT11b	174.112 1,576.767 1,012.473	395.200	526.597 338.499	789.391 507.244	175.120 1,577.775 1,013.480
β105Leu→Arg NL	βT12a βT12b	174.112 1,605.881	402.478	536.302	803.949	175.120 1,606.889

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
β106Leu→Arg	βT12a	287.196				288.204
Terre Haute	βT12b	1,492.797	374.207	498.607	747.406	1,493.805
β110Leu→Arg	βT12a	670.413		224.479	336.214	671.420
NL	βT12b	1,109.580		370.868	555.798	1,110.588
β114Leu→Arg	βT12a	1,084.643		362.555	543.329	1,085.651
NL	βT12b	695.350		232.791	348.683	696.358
β141Leu→Arg	βT14a	855.493		286.172	428.754	856.501
Olmsted	βT14b	354.202				355.209
	βT(14b-15)	654.324		219.116	328.170	655.332

All mass and m/z values are monoisotopic.

NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a positive polarity change in the β -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

I: interference.

All these mutations can occur by a single base change in the DNA codon.

In Boras and Caribbean, β T10b and β T10b-11 contain Cys. Also, β T10b-11 is more likely to occur than β T10b because β 94Asp hinders cleavage at β 95Lys.

In β 96Leu \rightarrow Arg, β T(10-11a) contains Cys. Also, β T(10-11a) is more likely to occur than β T11a because β 94Asp hinders cleavage at β 95Lys.

In β 105Leu \rightarrow Arg, β 106Leu \rightarrow Arg and β 110Leu \rightarrow Arg, β T12b contains Cys.

In β 114Leu \rightarrow Arg, β T12a contains Cys.
Table 4.5.12. The tryptic peptides produced by the eleven Lys \rightarrow Asn mutations in the β -chair
Mass change: -14.052 Da (monoisotopic), -14.070 Da (average)

Mutation Name	Peptide	(M+5H) ⁵⁺	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M+H) ⁺
β8Lys→Asn Limassol	βT(1-2)		463.746 <i>464.027</i>	617.992 618.367	926.484 927.047	1,851.961 <i>1,853.086</i>
β17Lys→Asn J-Amiens	βT(2-3)		554.285 <i>554.613</i>	738.710 <i>739.148</i>	1,107.562 <i>1,108.218</i>	2,214.116 2,215.429
β59Lys→Asn J-Lome	βT(5-6)		568.771 569.138	758.025 758.515	1,136.534 <i>1,137.268</i>	2,272.060 2,273.529
β61Lys→Asn Hikari	βT(6-7)			209.119	313.175	625.342
β65Lys→Asn J-Sicilia	βT(7-8)				263.641	526.274
β66Lys→Asn Ulm	βT(8-9)		446.739 <i>447.009</i>	595.317 595.676	892.471 893.009	1,783.934 <i>1,785.011</i>
β82Lys→Asn Providence	βT(9-10)		765.379 765.860	1,020.170 <i>1,020.811</i>	1,529.751 <i>1,530.712</i>	3,058.494 <i>3,060.416</i>
	βT(9-11)	834.014 8 <i>34.534</i>	1,042.266 <i>1,042.915</i>	1,389.352 <i>1,390.218</i>	2,083.524 2,084.823	4,166.041 <i>4,168.638</i>
β95Lys→Asn Detroit	βT(10-11)	503.840 <i>504.157</i>	629.548 629.945	839.061 839.590	1,258.088 1,258.881	2,515.168 2,516.755
β120Lys→Asn Riyadh	βT(12-13)	613.927 614.324	767.157 767.652	1,022.540 1,023.201	1,533.306 1,534.297	3,065.604 3,067.586
β132Lys→Asn Yamagata	βT(13-14)		624.582 624.963	832.440 <i>832.948</i>	1,248.156 1.248.919	2,495.305 2.496.830
6	βT(13-15)	559.892 560.236	699.613 700.043	932.481 933.054	1,398.217 1,399.077	2,795.427 2,797.147
β144Lys→Asn Andrew-Minneap	βT(14-15) olis		359.692 <i>359.909</i>	479.253 479.543	718.376 718.811	1,435.745 <i>1,436.614</i>

Monoisotopic m/z values are in normal font, average values are in italics.

This mutation causes a negative polarity change in the β -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

Hb Providence partly deamidates to give β 82Lys \rightarrow Asn and β 82Lys \rightarrow Asp. Above values assume β 82Lys \rightarrow Asn. β T(9-11) will probably occur because β 94Asp hinders cleavage at β 95Lys.

All these mutations are possible by a single base change in the DNA codon.

Peptides βT(9-10), βT(9-11), βT(10-11), βT(12-13) contain Cys.

Table 4.5.13. The tryptic peptides produced by three Lys→Ile mutations in the β-chain Mass change: -15.011 Da (monoisotopic), -15.015 Da (average)

Mutation Name	Peptide	$(M+5H)^{5+}$	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
β66Lys→Ile NL	βT(8-9)		446.500	594.997	891.992	1,782.976
β120Lys→Ile	βT(12-13)	613.735	766.917	1,022.220	1,532.826	3,064.645
Jianghua		<i>614.135</i>	767.416	<i>1,022.886</i>	<i>1,533.825</i>	<i>3,066.642</i>
β132Lys→Ile	βT(13-14)	499.675	624.342	832.121	1,247.677	2,494.346
NL		<i>499.983</i>	624.727	8 <i>32.634</i>	<i>1,248.447</i>	2,495.885

Monoisotopic m/z values are in normal font; average values are in italics.

NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a negative polarity change in the β -chain.

Although there are eleven Lys in the β -chain, only those mutations shown can occur by a single base change in the DNA codon (AAA \rightarrow ATA).

Peptide β T(12-13) contains Cys.

Table 4.5.14. The tryptic peptides produced by the eleven Lys→Thr mutations in the β-chain Mass change: -27.047 Da (monoisotopic), -27.069 Da (average)

Mutation Name	Peptide	(M+5H) ⁵⁺	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
β8Lys→Thr Rio Grande	βT(1-2)		460.497 460.778	613.660 <i>614.034</i>	919.987 920.547	1,838.965 <i>1,840.087</i>
β17Lys→Thr NL	βT(2-3)		551.036 <i>551.363</i>	734.379 <i>734.815</i>	1,101.064 <i>1,101.719</i>	2,201.120 2,202.430
β59Lys→Thr J-Kaohsiung	βT(5-6)		565.522 565.888	753.693 754.182	1,130.036 <i>1,130.769</i>	2,259.064 2,260.530
β61Lys→Thr Novel	βT(6-7)			204.788	306.677	612.347 (I)
β65Lys→Thr NL	βT(7-8)				257.143	513.279
β66Lys→Thr Chico	βT(8-9)		443.491 <i>443.759</i>	590.985 591.343	885.973 886.510	1,770.939 <i>1,772.012</i>
β82Lys→Thr Rahere	βT(9-10)		762.131 762.610	1,015.838 <i>1,016.478</i>	1,523.253 <i>1,524.212</i>	3,045.499 <i>3,047.417</i>
	βT(9-11)	831.415 <i>831.934</i>	1,039.017 <i>1,039.666</i>	1,385.020 <i>1,385.885</i>	2,077.027 2,078.324	4,153.045 <i>4,155.639</i>
β95Lys→Thr NL	βT(10-11)		626.299 626.695	834.729 835.257	1,251.590 <i>1,252.382</i>	2,502.172 2,503.756
β120Lys→Thr NL	βT(12-13)	611.328 611.724	763.908 764.403	1,018.208 1,018.868	1,526.808 1,527.798	3,052.608 3,054.587
β132Lys→Thr Cook	βT(13-14)		621.333 621.714	828.108 828.616	1,241.659 1.242.419	2,482.309 2.483.831
	βT(13-15)	557.293 557.636	696.364 696.793	928.149 928.721	1,391.720 <i>1,392.578</i>	2,782.432 2,784.148
β144Lys→Thr NL	βT(14-15)		356.443 356.660	474.922 <i>475.210</i>	711.879 <i>712.312</i>	1,422.749 <i>1,423.615</i>

Monoisotopic m/z values are in normal font; average values are in italics.

NL: Not listed in http://globin.bx.psu.edu.

This mutation causes a negative polarity change in the β -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

All these mutations can occur by a single base change in the DNA codon.

Peptides βT(9-10), βT(9-11), βT(10-11), βT(12-13) contain Cys.

With Rahere, $\beta T(9-11)$ will probably occur because $\beta 94Asp$ hinders cleavage at $\beta 95Lys$.

Table 4.5.15. The new tryptic peptides produced by the single Met \rightarrow Arg mutation in the β -chain Mass change: 25.061 Da (monoisotopic), 24.989 Da (average)

Mutation Name	Peptide	Mass (M)	(M+3H) ³⁺	(M+2H) ²⁺	$(M+H)^+$
β55Met→Arg	βΤ5α	1,686.789	563.271	844.402	1,687.797
NL	βT5b	414.223		208.119	415.231

Notes.

All mass and m/z values are monoisotopic.

NL: Not listed in http://globin.bx.psu.edu.

This mutation causes a positive polarity change.

This mutation can occur by a single base change in the DNA codon (ATG \rightarrow AGG).

$(M+3H)^{3+}$ $(M+2H)^{2+}$ Mutation Peptide Mass $(M+H)^{+}$ Name **(M)** β 5Pro \rightarrow Arg βT1a 624.371 209.131 313.193 625.379 Warwickshire βT1b 404.191 203.103 405.199 β 36Pro \rightarrow Arg βT4a 254.834 381.748 762.488 761.480 Sunnybrook βT4b 589.297 295.656 590.305 β51Pro→Arg βT5a 1,304.604 435.876 653.310 1,305.612 Willamette βT5b 830.396 277.806 416.206 831.403 β58Pro→Arg βT5a 1,988.894 663.972 995.455 1,989.902 Dhofar, βT5b 373.269 374.277 638.350 213.791 320.183 639.358 $\beta 100 Pro \rightarrow Arg$ βT11a New Mexico βT(10-11a) 2,041.005 681.343 1.021.510 2.042.013 βT11b 564.266 283.141 565.273 β 124Pro \rightarrow Arg βT13a 551.270 276.643 552.278 Khartoum βT13b 903.481 452.749 904.489 302.168 **βT13** 1,436.741 479.922 719.378 1,437.749 β 125Pro \rightarrow Arg βT13a 648.323 217.116 325.169 649.331 NL βT13b 806.429 269.817 404.222 807.437

Table 4.5.16. The tryptic peptides produced by the seven Pro→Arg mutations in the β-chain Mass change: 59.048 Da (monoisotopic), 59.071 Da (average)

Notes.

All mass and m/z values are monoisotopic.

NL: Not listed in http://globin.bx.psu.edu.

This mutation causes a positive polarity change in the β -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

All these mutations can occur by a single base change in the DNA codon.

In Dhofar, β T5b is 59KVK, where VK is β T6.

In New Mexico, $\beta T(10-11a)$ is more likely to occur than $\beta T11a$ because $\beta 94Asp$ hinders cleavage at $\beta 95Lys$. Also, $\beta T(10-11a)$ contains Cys.

In Khartoum, β 125Pro inhibits cleavage at β 124Arg. Hence, β T13 is observed instead of the two new peptides shown above.

Table 4.5.17. The tryptic peptides produced by two of the Ser→Arg mutations in the β-chain Mass change: 69.069 Da (monoisotopic), 69.109 Da (average)

Mutation Name	Peptide	Mass (M)	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
β72Ser→Arg	βΤ9α	661.391	221.472	331.703	662.399
Headington	βΤ9b	1,094.572	365.865	548.294	1,095.580
β89Ser→Arg	βT10a	764.418	255.814	383.217	765.426
Vanderbilt	βT10b	743.327	248.784	372.671	744.335
	βT(10b-11)	1,850.873	617.966	926.445	1,851.881

Notes.

All mass and m/z values are monoisotopic.

NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a positive polarity change in the β -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

Although there are 5 Ser in the β -chain, only Headington and Vanderbilt can occur by a single base change in the DNA codon (AGT \rightarrow AGA or CGT).

In Vanderbilt, $\beta T(10b-11)$ is more likely to be observed than $\beta T10b$ because $\beta 94Asp$ hinders cleavage by trypsin at $\beta 95Lys$. Also $\beta T(10b-11)$ contains Cys.

Table 4.5.18. The tryptic peptides produced by one of the Thr \rightarrow Arg mutations in the β -chain Mass change: 55.053 Da (monoisotopic), 55.083 Da (average)

Mutation	Peptide	Mass	$(M+4H)^{4+}$	$(M+3H)^{3+}$	$(M+2H)^{2+}$	$(M+H)^+$
Name	_	(M)				
β87Thr→Arg	βT10a	550.286			276.151	551.294
NL	βT10b	943.443		315.489	472.729	944.451
	βT(10b-11)	2,050.990	513.755	684.671	1,026.503	2,051.997

Notes.

All masses and m/z values are monoisotopic.

NL: Not listed in <u>http://globin.bx.psu.edu</u>.

This mutation causes a positive polarity change in the β -chain.

Peptides β T10b and β T(10b-11) contain Cys.

Although there are 7 Thr in the β -chain, only the one shown (β 87Thr) can mutate to Arg by a single base change in the DNA codon (ACA \rightarrow AGA).

Table 4.5.19. The tryptic peptides produced by two Thr→Lys mutations in the β-chain Mass change: 27.047 Da (monoisotopic), 27.069 Da (average)

Mutation Name	Peptide	Mass (M)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M+H) ⁺
β50Thr→Lys	βΤ5α	1,175.550		392.858	588.783	1,176.558
Edmonton	βΤ5b	927.448		310.157	464.732	928.456
	βΤ5	2,084.988	522.255	696.004	1,043.502	2,085.996
β87Thr→Lys	βT10a	522.280			262.148	523.288
D-Ibadan	βT10b	943.443		315.489	472.729	944.451
	βT(10b-11)	2,050.990	513.755	684.671	1,026.503	2,051.997

Notes.

All mass and m/z values are monoisotopic.

NL: Not listed in http://globin.bx.psu.edu.

This mutation causes a positive polarity change in the β -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

Peptides β T10b and β T(10b-11) contain Cys.

Although there are 7 Thr in the β -chain only β 87Thr \rightarrow Lys can occur by a single base change in the codon (ACA \rightarrow AAA).

The mutation in Edmonton requires two base changes in the DNA codon (ACT \rightarrow AAG or AAA), or the codon at β 50 was ACA. This conflict is mentioned in the Web summary for Edmonton.

Table 4.5.20. The new tryptic peptides produced by the two Trp \rightarrow Arg mutations in the β -chain Mass change: -29.978 Da (monoisotopic), -30.026 Da (average)

Mutation Name	Peptide	Mass (M)	(M+3H) ³⁺	(M+2H) ²⁺	(M + H) ⁺
β15Trp→Arg Belfast	βT2a βT2b	716.418 203.127	239.814	359.217	717.426 204.135
β37Trp→Arg Rothschild	βT4a βT4b	858.533 403.218	287.185	430.274 202.617	859.541 404.226

Notes.

All mass and m/z values are monoisotopic.

This mutation causes a positive polarity change in the β -chain.

Variants identified by MS and ions observed in digest spectra are shown in bold font.

Both mutations can occur by a single base change in the DNA codon.

4.6. Tables to assist in searching for some tryptic peptides produced from α- and β-chain variants that involve the mutations Xxx↔Asp when adjacent to Lys

When proteins are digested with trypsin, cleavage normally occurs at the C-terminal side of the amino acid residues Arg (R) and Lys (K), except when Pro (P) occurs C-terminally and adjacent to these residues. This latter situation does not arise with the α -, β - and γ -chains in human haemoglobin. However, when Asp (D) occurs adjacent to Lys cleavage is severely inhibited at 6DK and 126DK in the normal α -chain and at 94DK in the normal β -chain causing the peptides shown below to occur as major components in 30-minute digests.

αT1-2	1 6 VLSPA <u>DK</u> TNVK
αΤ12-13	100 126 LLSHCLLVTLAAHLPAEFTPAVHASL <u>DK</u> FLASVSTVLTSK
βT10-11	83 94 GTFATLSELHC <u>DK</u> LHVDPENFR

The following three tables were devised to assist in searching for variants that involve mutations from the three Asp shown above, i.e. $\alpha 6Asp \rightarrow Xxx$ (Table 4.6.1), $\alpha 126Asp \rightarrow Xxx$ (Table 4.6.2) and $\beta 94Asp \rightarrow Xxx$ (Table 4.6.3).

Table 4.6.1. Some $\alpha 6Asp \rightarrow Xxx$ mutations that can occur by a single base change in the nucleotide codon. Masses and m/z values are monoisotopic. Variants identified by ESI-MS are shown in bold font. ΔM : Mass change. NL: Not listed in <u>http://globin.bx.psu.edu</u>. Unless otherwise stated, the mutation can be in either the $\alpha 1$ or the $\alpha 2$ gene.

Mutation Name	Nominal ΔM (Da)	Mass (Da)	$\alpha T1^{2+}$	$\alpha T1^+$
α6Asp→Ala Sawara	-44	684.417	343.216	685.425
α6Asp→Asn Dunn	-1	727.423	364.719	728.431
α6Asp→Glu NL	14	742.423	372.219	743.430
α6Asp→Gly Swan River	-58	670.401	336.209	671.409
α₂6Asp→His Galliera II	22	750.439	376.227	751.447
α₁6Asp→His Galliera I	22	750.439	376.227	751.447
α6Asp→Tyr Woodville	48	776.443	389.229	777.451

Mutation Name	Nominal ΔM (Da)	Mass (Da)	$\alpha T1^{2+}$	$\alpha T1^+$
α6Asp→Val Ferndown	-16	712.448	357.232	713.456
α6Asp→0 Boyle Heights	-115	613.380	307.698	614.388
Normal αT2 pep	tide	460.265	αT2 ²⁺ 231.140	αT2 ⁺ 461.272

Table 4.6.2. Some $\alpha 126Asp \rightarrow Xxx$ mutations that can occur by a single base change in the nucleotide codon. For peptides below mass 2,300 Da, only monoisotopic m/z values are given in normal font. For peptides above mass 2,300 Da, average m/z values are given beneath the monoisotopic values. Variants identified by ESI-MS are shown in bold font. ΔM : Mass change. NL: Not listed in <u>http://globin.bx.psu.edu</u>. Unless otherwise stated, the mutation can be in either the $\alpha 1$ or the $\alpha 2$ gene.

Mutation Name	Nominal ΔM (Da)	αT12 ⁴⁺	$\alpha T12^{3+}$	αT12 ²⁺
α_1 126Asp \rightarrow Ala	-44	731.662	975.213	1,462.316
Verdun		732.134	975.843	1,463.260
α126Asp→Asn	-1	742.413	989.548	1,483.818
Tarrant		742.890	990.185	1,484.773
α₁126Asp→Glu	14	746.163	994.548	1,491.318
Burlington		746.643	995.188	1,492.279
α126Asp→Gly	-58	728.158	970.541	1,455.308
West One		728.627	971.167	1,456.247
α₁126Asp→His	22	748.167	997.220	1,495.326
Sassari		748.650	997.864	1,496.291
α126Asp→Tyr	48	754.668	1,005.888	1,508.329
Montefiore		755.158	1,006.542	1,509.309
α126Asp→Val	-16	738.670	984.557	1,476.331
Fukutomi		739.148	985.194	1,477.287
α126Asp→0	-115	713.902	951.534	1,426.797
NL		714.364	952.150	1,427.721
		αT13 ³⁺	αT13 ²⁺	αT13 ⁺
Normal aT13 peptie	de	418.244	626.862	1,252.715
		αT13-14 ³⁺	αT13-14 ²⁺	αT13-14 ⁺
Normal $\alpha T(13-14)$ p	eptide	524.632	786.444	1,571.880

Table 4.6.3. Some β 94Asp \rightarrow Xxx mutations that can occur by a single base change in the nucleotide codon. The *m*/*z* values are monoisotopic. Variants identified by ESI-MS are shown in bold font. Δ M: Mass change. NL: Not listed in <u>http://globin.bx.psu.edu</u>.

Mutation Name	Nominal ΔM (Da)	βT10 ³⁺	βT10 ²⁺	βT10 ⁺
β94Asp→Ala NL	-44	459.900	689.346	1,377.684
β94Asp→Asn Bunbury	-1	474.235	710.849	1,420.690
β94Asp→Glu NL	14	479.235	718.348	1,435.689
β94Asp→Gly Chandigarh	-58	455.228	682.338	1,363.668
β94Asp→His Barcelona	22	481.907	722.357	1,443.705
β94Asp→Tyr Geldrop St Anna	48	490.575	735.359	1,469.710
β94Asp→Val NL	-16	469.244	703.361	1,405.715
β94Asp→0 NI	-115	436.221	653.827	1,306.647
Normal βT11 peptic	le	βT11³⁺ 376.193	βT11 ²⁺ 563.786	βT11 ⁺ 1,126.565

Table 4.6.4. Some variants that result from the mutation $Xxx \rightarrow Asp$ when Xxx is adjacent to Lys and that can occur by a single base change in the nucleotide codon. For peptides below mass 2300, monoisotopic m/z values are given in normal font. For peptides above mass 2300, average m/z values are given in italics below the monoisotopic values. Variants identified and the m/z values of the peptides observed by ESI-MS are shown bold. ΔM : Nominal mass change. NL: Not listed in http://globin.bx.psu.edu.

Mutation Name	Peptide ∆M (Da)	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺	(M + H)⁺
α10Val→Asp NL	αT(1-3) 16	425.980	567.638	850.952	1,700.897
α15Gly→Asp I-Interlaken	αT(3-4) 58	526.008	701.009	1,051.009	2,101.010
	αΤ3			295.651	590.294^a
α30Glu→Asp	αT(4-5)	642.820	856.757	1,284.632	
NL	-14	643.231	857.306	1,285.455	
α55Val→Asp NL	αT(6-7) 16	558.018	743.688	1,115.028	2,229.048
α59Gly→Asp Adana	αT(7-8) 58		195.444	292.662	584.316
α89His→Asp	α(9-10)	811.667	1,081.886	1,622.326	
NL	-22	812.167	1,082.553	1,623.325	
β7Glu→Asp Stockholm	βT(1-2) -14	463.755	618.004	926.502	1,851.997
β16Gly→Asp J-Baltimore	βT(2-3) 58	572.299 572.640	762.730 763.184	1,143.590 <i>1,144.272</i>	2,286.173 2,287.536
β29Gly→Asp ^b Lufkin	βT(3-4) 58	657.851 658.250	876.798 877.331	1,314.693 <i>1,315.492</i>	2,628.379 2,629.977
β64Gly→Asp J-Calabria	βT(7-8) 58		200.116	299.670	598.331
		$(M+5H)^{5+}$	(M+4H) ⁴⁺	(M+3H) ³⁺	(M+2H) ²⁺
β83Gly→Asp ^c	βT(9-11)	848.426	1,060.280	1,413.371	2,119.553
Pyrgos	58 RT(8-11)	848.933 874 045	1,000.942 1 092 304	1,414.254	2,120.870
	μι(0-11)	874.590	1,092.986	1,456.978	2,183.000
β119Gly→Asp Fannin-Lubbock I	βT(12-13) 58	628.338 628.745	785.171 785.679	1,046.559 1,047.236	1,569.334 <i>1,570.350</i>
β119Gly→Asp	βT(12-13)	631.142	788.675	1,051.231(I) 1,576.342
/β111Val→Leu Fannin-Lubbock II	72	631.550	789.186	1,051.912(1) 1,577.364
β143His→Asp	βT(14-15)				

Rancho Mirage -22

^a. In I-Interlaken, there is interference at m/z 701.01 and 1,051.01, which prevents observation of the variant $\alpha T(3-4)$ peptide. However, the variant $\alpha T3^+$ ion was observed with sufficient intensity to allow identification.

^b. Although the mutant Asp is adjacent to Arg, it has potential to hinder cleavage at the Arg.

^c. In this mutation, the new Asp occurs on the C-Terminal side of the Lys.

4.7. Examples of variants in which cleavage by trypsin at Lys is severely hindered by an adjacent Asp.

4.7.1. Identification of a Hb Bunbury heterozygote.

Analysis of a blood sample gave the mass of the β -chain as 15,866.81 Da, i.e. (β^{A} -0.43) Da, suggesting a $\beta^{A}/(\beta^{A}$ -1 Da) heterozygote. Figures 4.7.1 and 4.7.2 show part spectra from 30-min tryptic digests of (a) a normal control and (b) the blood sample. The presence of the variant β T10²⁺ ion (Figure 4.7.1) at its calculated value together with the normal β T11²⁺ ion (Figure 4.7.2) identifies the mutation as β 94Asp \rightarrow Asn, Hb Bunbury. Note that although there are three additional mutations in the β T10-11 peptide that would lower the mass by 1 Da, only the Bunbury mutation can produce the variant β T10²⁺ and the normal β T11²⁺ ions at the *m*/*z* values shown.

4.7.2. Identification of a Hb J-Baltimore heterozygote.

The mass of the β -chain in a blood sample was 58 Da higher than normal, suggesting two possible mutations, either Gly \rightarrow Asp or Ala \rightarrow Glu. Part spectra of the tryptic digests from the blood sample and a control are shown in Figure 4.7.3. The spectrum from the variant sample (Figure 4.7.3b) shows an intense doubly charged ion at m/z 1,143.58, which corresponds to the $\beta T(2-3)^{2+}$ ion (calculated m/z 1,143.59) characteristic of the mutation $\beta 16$ Gly \rightarrow Asp, J-Baltimore.

4.7.3. Identification of a Hb Pyrgos heterozygote.

This blood sample also gave a β -chain mass that was 58 Da higher than normal, suggesting either Gly \rightarrow Asp or Ala \rightarrow Glu. However, in this case the part spectra from 30-min digests of control and sample (Figure 4.7.4) show how the formation of the β T(9-10-11) and β T(8-9-10-11) tryptic peptides result from the mutation β 83Gly \rightarrow Asp, Hb Pyrgos.

SECTION 5

5.0. Tandem Mass Spectrometry	153
5.1. Fragmentation of peptides	153
5.2. β T1 Comprehensive Identification of Hb S (β 6Glu \rightarrow Val)	154
5.3. α-chain mutation examples	163
5.3.1. α T1 - Hb St. Jozef (α 1Val \rightarrow Leu and initiator Met retained)	164
5.3.2. $\alpha T(1-2)$ - Hb Central Middlesex ($\alpha 3Ser \rightarrow Pro$)	170
5.3.3. αT2 - Hb J-Wenchang-Wuming (α11Lys→Gln)	175
5.3.4. α T3 - Hb J-Paris-I (α 12Ala \rightarrow Asp)	181
5.3.5. α T4 - Hb LeLamentin (α 20His \rightarrow Gln)	186
5.3.6. α T4 - Hb Fontainebleau (α 21Ala \rightarrow Pro)	192
5.3.7. α T4 - Hb Prato (α 31Arg \rightarrow Ser)	198
5.3.8. αT5 - Hb Chelsea (α38Thr→Ala)	204
5.3.9. α T6 - Hb Riccarton (α 51Gly \rightarrow Ser)	210
5.3.10. αT6 - Hb Shimonoseki (α54Gln→Arg)	215
5.3.11. αT6 - Hb Shaare-Zedek (α56Lys→Glu)	220
5.3.12. α T7 - Hb L-Persian Gulf (α 57Gly \rightarrow Arg)	226
5.3.13. αT9 - Hb Q-India (α64Asp→His)	231
5.3.14. αT9 - Hb G-Philadelphia (α68Asn→Lys)	236
5.3.15. α T9 - Hb Q-Thailand (α 74Asp \rightarrow His)	241
5.3.16. α T9 - Hb Stanleyville-II (α 78Asn \rightarrow Lys)	247
5.3.17. αT9 - Hb M-Iwate (α87His→Tyr)	252
5.3.18. αT9 - Hb J-Broussais (α90Lys→Asn)	260
5.3.19. αT11 - Hb Setif (α94Asp→Tyr)	268
5.3.20. αT12 - Hb Hopkins-II (α112His→Asp)	275
5.3.21. α T12 - Hb J-Meerut (α 120Ala \rightarrow Glu)	281
5.3.22. αT13 - Hb Wayne (α139–141 →139 NTVKLEPR)	288
5.4. β-chain mutation examples	295
5.4.1. βT1 - Hb Raleigh (β1Val→NAc-Ala)	296
5.4.2. β T1 - Hb South Florida (β 1Val \rightarrow Met initiator Met retained)	301
5.4.3. β T1 - Hb Marseille (β 2His \rightarrow Pro initiator Met retained)	307
5.4.4. βT1 - Hb Tyne (β5Pro→Ser)	312
5.4.5. βT1 - Hb C (β6Glu→Lys)	318
5.4.6. β T1 - Hb Ziguinchor (β 6Glu \rightarrow Val and β 58Pro \rightarrow Arg)	327
5.4.7. βT2 - Hb Porto Alegre (β9Ser→Cys)	334
5.4.8. βT2 - Hb Belfast (β15Trp→Arg)	344
5.4.9. βT2 - Hb J-Baltimore (β16Gly→Asp)	350

5.4.10. β T3 - Hb D-Ouled Rabah (β 19Asn \rightarrow Lys)	
5.4.11. β T3 - Hb D-Iran (β 22Glu \rightarrow Gln)	
5.4.12. β T3 - Hb E (β 26Glu \rightarrow Lys)	
5.4.13. β T4 - Hb North Chicago (β 36Pro \rightarrow Ser)	
5.4.14. β T5 - Hb Hammersmith (β 42Phe \rightarrow Ser)	
5.4.15. β T5 - Hb Osu Christiansborg (β 52Asp \rightarrow Asn)	
5.4.16. β T5 - Hb Sheffield (β 58Pro \rightarrow His)	
5.4.17. β T6 - Novel (β 61Lys \rightarrow Thr)	
5.4.18. β T7 - Hb J-Calabria (β 64Gly \rightarrow Asp)	
5.4.19. β T9 - Hb Taradale (β 82Lys \rightarrow Arg)	
5.4.20. β T20 - Hb Valletta (β 87Thr \rightarrow Pro)	
5.4.21. β T21 - Hb Köln (β 98Val \rightarrow Met)	
5.4.22. β T21 - Hb Alzette (β 104Arg \rightarrow Lys)	
5.4.23. β T22 - Hb Southampton (β 106Leu \rightarrow Pro)	
5.4.24. β T12 - Hb Johnstown (β 109Val \rightarrow Leu)	
5.4.25. β T13 - Hb O-Arab (β 121Glu \rightarrow Lys)	440
5.4.26. βT13 - Hb D-Punjab (D-Los Angeles) (β121Glu→Gln)	445
5.4.27. β T13 - Hb Ty Gard (β 124Pro \rightarrow Gln)	
5.4.28. β T14 - Hb Alperton (β 135Ala \rightarrow Val)	

5.0. Tandem Mass Spectrometry

The principles of mass spectrometry and tandem mass spectrometry were outlined in Section 1.3. In this section the processes for defining mutations in a number of examples from both the α - and β -chains are presented.

5.1. Fragmentation of peptides

Peptide fragmentation is generally referenced to the fragmentation of the peptide bond, according to the Roepstorff-Fohlman nomenclature⁽¹⁾. The convention describes the retention of the charge on either the N-terminus (a, b, c fragments) or the C-terminus (x, y, z fragments) of a peptide and also references the number of amino acids retained in the charged fragment, relative to the N- or C-termini.

For a peptide of four amino acid residues (R₁, R₂, R₃ and R₄) shown in Figure 5.1.1.

Figure 5.1.1. Tetrapeptide fragmentation.

Under low-energy collision-induced dissociation, peptides typically fragment across C -- N linkage to yield b and y fragment ions as illustrated in Figure 5.1.2. During the formation of the \mathbf{y} ions, there is typically a rearrangement of two hydrogen atoms in order for the y-fragment to retain the charge. This is typically denoted \mathbf{y}'' .

Reference

⁽¹⁾ P. Roepstorff and J. Fohlman, Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides, Biomed.Mass Spectrom., 11 (1984) 601.

5.2. βT1 Comprehensive Identification of Hb S (β6Glu→Val)

Generally, the Sickle variant, β 6Glu (E) \rightarrow Val (V), is identified in hospital haemoglobinopathy screening laboratories by various routine methods, which include ce-HPLC or IEF. Occasionally, however, confirmation of its identity is requested, when, for example, the fraction of the Sickle variant in a heterozygote deviates significantly from its normal value (~40%). The following describes the results of analysing a Sickle heterozygote.

βT1 Peptide

Figure 5.2.1. Sequence of the β T1 tryptic peptide showing the numbering of the b- and y"-series.

The ce-HPLC trace in Figure 5.2.2. shows a significant signal in the S-window at 4.49 min and indicates that the mutation exhibits a positive charge change from the normal Hb.

Figure 5.2.2. ce-HPLC trace of the Sickle variant

Figure 5.2.3. shows the spectrum from a typical Sickle heterozygote. The presence of a variant β -chain at 15,837.34 Da, 29.98 Da lower than normal, is consistent with Hb S (Sickle), but could be due to four other mutations Thr \rightarrow Ala (7 possibilities), Trp \rightarrow Arg (2 possibilities), Ser \rightarrow Gly (5 possibilities), Met \rightarrow Thr (1 possibility) or Glu \rightarrow Val (8 possibilities).

In Figure 5.2.4. are part spectra from 30-minute tryptic digests of (a) normal control and (b) a Sickle heterozygote showing the $\beta T1^{2+}$ ions at m/z 476.76 (normal) and m/z 461.80 (variant). The region containing the $\beta T1^+$ ions - m/z 952.50 (normal) and m/z 922.54 (variant) is shown in Figure 5.2.5. Both figures show that the Sickle mutation occurs in the $\beta T1$ peptide. However, either $\beta 6Glu$ (GAG) or $\beta 7Glu$ (GAG) could mutate to Val (GTG) by a single base change in the codon. Hence, tandem MS is needed to distinguish $\beta 6Glu \rightarrow Val$ (Hb Sickle) from $\beta 7Glu \rightarrow Val$ (Hb Haaglanden, non-sickling). A third possibility, $\beta 4Thr$ (ACT) $\rightarrow Ala$ (GCT), can usually be discounted because it is likely to be silent by ce-HPLC. Thus, if an S-like variant is detected by ce-HPLC, then $\beta 4Thr \rightarrow Ala$ can be eliminated.

Figures 5.2.6.-5.2.8. show diagnostic parts of tandem mass spectra from (a) the normal, and (b) the Sickle $\beta T1^{2+}$ ions. Complete tandem mass spectra are compared in Figure 5.2.9. The collision energy was 18V with argon as the collision gas at 2.5 x 10^{-3} mbar pressure.

The Hb S mutation, β 6Glu \rightarrow Val, may be positively identified and distinguished from β 7Glu \rightarrow Val and β 4Thr \rightarrow Ala when the criteria in items 1 and 2 below are met. Items 3-5 give strong supporting evidence.

- 1. The y''_1 ion is present at m/z 147.1 in the variant spectrum (Figure 5.2.9).
- 2. The y''_2 ion remains at its normal value (m/z 276.1) in the variant spectrum, whilst y''_3 decreases from m/z 405.2 in the normal spectrum to 375.2 in the variant spectrum (Figure 5.2.6). If the mutation were β 7Glu \rightarrow Val, then y''_2 would appear at m/z 246.1 in the variant spectrum instead of at m/z 276.1.
- 3. The internal fragment PV occurs at m/z 197.1 in the variant spectrum instead of PE at m/z 227.1 in the normal spectrum (Figure 5.2.7).
- 4. The b₄ ion occurs at its normal value (m/z 451.3) in the variant spectrum, whilst b₆ occurs at m/z 647.2 instead of its normal value at m/z 677.2 (Figure 5.2.8). The b₄ ion at m/z 451.3 in the variant spectrum eliminates β 4Thr \rightarrow Ala.
- 5. Provided β 4Thr \rightarrow Ala has been eliminated, supporting evidence for Sickle would be given by TPV (*m/z* 298.2) replacing normal TPE (*m/z* 328.2) (Figure 5.2.9.) and by HLTPV (*m/z* 548.3) replacing normal HLTPE (*m/z* 578.2) (Figure 5.2.8.). Both of these internal fragments would occur at their normal values were β 7Glu \rightarrow Val present. The *m/z* 548.3 ion (b₅) was detected at a very low level in the control (due to β 5Pro?). Hence, it is probably mainly HLTPV in the variant spectrum.

5.3. α -chain mutation examples

This section contains examples of the determination of amino acid mutations in the α -chain and have been selected to illustrate certain characteristics that can be investigated using the approaches described in this book. The entries denoted (Novel) were novel when first analysed by mass spectrometry, the name indicates the current recorded name in the literature.

Section	Tryptic Peptide	Mutation	Name
5.3.1.	αT1	α 1Val \rightarrow Leu, Initiator Met retained	St.Jozef
5.3.2.	αΤ1	α3Ser→Pro	Central Middlesex (Novel)
5.3.3.	αΤ2	α11Lys→Gln	J-Wenchang-Wuming
5.3.4.	αΤ3	α12Ala→Asp	J-Paris-I
5.3.5.	αΤ4	α20His→Gln	LeLamentin
5.3.6.	αΤ4	α21Ala→Pro	Fontainebleau
5.3.7.	αΤ1	α31Arg→Ser	Prato
5.3.8.	αΤ5	α38Thr→Ile	Chelsea (Novel)
5.3.9.	αΤ6	α51Gly→Ser	Riccarton
5.3.10.	αΤ6	α54Gln→Arg	Shimonoseki
5.3.11.	αΤ6	α56Lys→Glu	Shaare Zedek
5.3.12.	αΤ7	α57Gly→Arg	L-Persian Gulf
5.3.13.	αT9	α64Asp→His	Q-India
5.3.14.	αT9	α68Asn→Lys	G-Philadelphia
5.3.15.	αT9	α74Asp→His	Q-Thailand
5.3.16.	αT9	α78Asn→Lys	Stanleyville-II
5.3.17.	αT9	α87His→Tyr	M-Iwate
5.3.18.	αT9	α90Lys→Asn	J-Broussais
5.3.19.	αT11	α 94Asp \rightarrow Tyr	Setif
5.3.20.	αT12	α112His→Asp	Hopkins-II
5.3.21.	αT12	α120Ala→Glu	J-Meerut
5.3.22.	αT13	$\alpha 139-141 \rightarrow \alpha 139$ NTVKLEPR	Wayne

Table 5.3.1. List of the mutation illustrations for α -chain.

5.3.1. αT1 - Hb St. Jozef (α1Val→Leu and initiator Met retained)

Hb St. Jozef is the result of a mutation in which the $\alpha 1$ amino acid is changed from Val to Leu through a single base change in the codon GTG \rightarrow CTG, and the initiator Met is retained.

a T1 Peptide								
α		1	2	3	4	5	6	7
		V	L	S	Р	Α	D	Κ
		\downarrow						
	Μ	L	L	S	Р	А	D	K

A blood sample from an anaemic patient showed no obvious abnormality by ce-HPLC (Figure 5.3.1.2.).

Figure 5.3.1.2. ce-HPLC trace for Hb St. Jozef.

Analysis by ESI-MS of the 500-fold diluted blood from this patient however, revealed an α -chain heterozygote in which the variant chain was 15,271.62 Da, 145.26 Da higher in mass than normal and was 14.8% the intensity of the total α -chains (Figure 5.3.1.3.). Furthermore, 30-minute tryptic digests of the heterozygote and a normal Hb showed that the mutation is at the N-terminus of the α -chain and confirmed the mass excess of the variant over normal as 145.26 Da. This mass excess strongly suggests the variant is Hb St. Jozef, as shown in Table 2.4. headed: "Some variants that can be identified from the mass spectra of the globin chain". The mutation in St. Jozef is α 1Val→Leu with retention of the initiator Met.

Figure 5.3.1.4 shows the diagnostic region of the tryptic digest mass spectra for (a) normal Hb and (b) the variant Hb. A new signal is observed in the lower panel at m/z 437.77 corresponding to the $\alpha T 1^{2+}$ ion from the 30-minute digest of the St. Jozef heterozygote. This is further supported by the data in the lower panel of Figure 5.3.1.5 and the singly charged $\alpha T 1^{+}$ signal at m/z 874.46.

Product ion spectra from the $\alpha T1^{2+}$ tryptic fragment ions from St Jozef at two collision energies are shown in Figures 5.3.1.6(a) and (b) showing the diagnostic b₂ (*m*/*z* 245.1) and immonium (M, *m*/*z* 104.1) ions. The spectra are consistent with the proposed $\alpha T1$ peptide from the St. Jozef mutation.

Note that if only the mass change is considered, the mutation could be either Val \rightarrow Leu or Val \rightarrow Ile. However, Val \rightarrow Leu requires only one base change in the codon (GTG \rightarrow CTG), whereas Val \rightarrow Ile requires two base changes (GTG \rightarrow ATT or ATC or ATA) and is therefore much less likely. In other words, the sample analysed in this work is much more likely to be St Jozef than α IVal \rightarrow Ile.

ì

5.3.2. αT(1-2) - Hb Central Middlesex (α3Ser→Pro)

Hb Central Middlesex is the result of a mutation in which the $\alpha 3$ amino acid residue is changed from Ser to Pro through a single base change in the codon, TCT \rightarrow CCT.

Tryptic cleavage at 7Lys (K) is severely restricted by 6Asp (D), resulting mainly in the production of $\alpha T(1-2)$.

Figure 5.3.2.1. Sequence of the Hb Central Middlesex $\alpha T(1-2)$ tryptic peptide.

A blood sample was submitted for analysis by mass spectrometry even though the ce-HPLC trace (Figure 5.3.2.2.) appeared normal.

Figure 5.3.2.2. ce-HPLC trace for Hb Cental Middlesex

ESI-MS analysis of the blood sample diluted 500-fold, however, revealed an α -chain heterozygote in which the intensity of the variant chain was 22% of total α -chains at a mass of 15,136.37 Da, 10 Da higher in mass than the normal α -chain (Figure 5.3.2.3). There is only one single amino acid change that can give 10 Da increase in mass by a single base change in the codon, namely Ser \rightarrow Pro (TCT \rightarrow CCT)

Figure 5.3.2.4. shows the diagnostic part of a 30-minute tryptic digest of (a) normal Hb and (b) the α chain heterozygote. The increase in mass of the $\alpha T(1-2)^{2+}$ tryptic fragment at m/z 591.37 in the lower panel places the mutation in the $\alpha T(1-2)$ peptide, and thus identifies the mutation as $\alpha 3$ Ser \rightarrow Pro.
Figures 5.3.2.5. shows a comparison of the product ion spectra for the $\alpha T(1-2)^{2+}$ tryptic fragments for (a) normal Hb and (b) the variant Hb. The 10 Da mass increase at b₃⁺ (*m*/*z* 310.0) fragment and y"₉²⁺ fragment (*m*/*z* 485.3) in the lower panel confirms the mutation as $\alpha 3Ser \rightarrow Pro$, Hb Central Middlesex.

This variant was novel when first analysed by mass spectrometry.

5.3.3. αT2 - Hb J-Wenchang-Wuming (α11Lys→Gln)

Hb J-Wenchang-Wuming is the result of a mutation in which the $\alpha 11$ amino acid residue is changed from Lys to Gln through a single base change in the codon, AAG \rightarrow CAG.

a T(1-2-3) Peptide

α	1	2	3	4	5	6	7	8	9	10	11		12	13	14	15	16
	V	L	S	Р	Α	D	K	Т	Ν	V	K		Α	А	W	G	K
											↓						
	V	L	S	Р	А	D	K	Т	N	V	Q	А	А	W	G	K	

Figure 5.3.3.1. Sequence of the Hb J-Wenchang-Wuming α T(1-2-3) tryptic peptide.

Note that tryptic cleavage at α 7Lys is severely restricted by α 6Asp, resulting mainly in the production of α T(1-2). The replacement of Lys with Gln at α 11 prevents tryptic cleavage, and results in an extended peptide covering the first three tryptic fragments of the α -chain, α T(1-2-3).

A blood sample was submitted for analysis by ESI-MS, because the ce-HPLC trace (Figure 5.3.3.2.) showed an abnormally high P3 response. The high P3 (mainly due to the variant) implies the variant causes a negative polarity change.

Figure 5.3.3.2. ce-HPLC trace for Hb Wenchang-Wuming.

ESI-MS of the 500-fold diluted blood sample (Figure 5.3.3.3.) showed peaks that correspond in mass to normal α - and β -chains, implying the mutation produces no mass change. From a single codon change with no change in mass infers either Gln \leftrightarrow Lys or Leu \leftrightarrow Ile, with the former indicated owing to the negative charge change.

Low HbA₂ suggests the variant is in the α -chain. Moreover, there is only one amino acid change that is governed by a single base change in the nucleotide codon and gives zero mass change, namely Gln \leftrightarrow Lys. Since this change gives a negative change in polarity as shown by the ce-HPLC response, the mutation is Lys \rightarrow Gln. There is only one other mutation that could give zero mass change, i.e. Leu \rightarrow Ile, but this can be discounted because it would give no polarity change.

Reference is made to Table 4.2.3. The tryptic peptides and their m/z values that result from a single amino acid change giving $<\pm 6$ Da change in the α -chain mass and involve a mutation from Lys, and a tryptic cleavage site is abolished with two adjacent tryptic peptides being combined into one larger new peptide. These mutations give a significant increase in negative charge and are readily detected by ce-HPLC and IEF. The presence of the new peptide at its predicted m/z values identifies the mutation.

Figure 5.3.3.4. shows the appearance of a peak at m/z 562.31, attributable to a new $\alpha T(1-2-3)^{3+}$ tryptic peptide ion, which supports the mutation $\alpha 11Lys \rightarrow Gln$, Hb J-Wenchang-Wuming. There is further evidence for this mutation in Figure 5.3.3.5. with the presence of a peak at m/z 842.95, attributable to the new $\alpha T(1-2-3)^{2+}$ tryptic peptide signal.

Figure 5.3.3.6. shows a marked decrease in the relative intensity of the α T3⁺ signal at m/z 532.29, which would be expected if one of the α -chain genes had mutated to allow the formation of a new α T(1-2-3) tryptic peptide.

5.3.4. αT3 - Hb J-Paris-I (α12Ala→Asp)

Hb J-Paris-I is the result of a mutation in which the $\alpha 12$ amino acid residue is changed from Ala to Asp through a single base change in the codon, GCC \rightarrow GAC.

$$\begin{array}{c} \alpha \text{ T3 Peptide} \\ \alpha \text{ 12 13 14 15 16} \\ A \text{ A W G K} \\ \downarrow \\ D \end{array}$$

A blood sample was submitted for analysis by ESI-MS because the ce-HPLC trace (Figure 5.3.4.2.) showed an abnormally high P3. The high P3 (mainly due to the variant) implies the variant causes a negative polarity change.

Figure 5.3.4.2. ce-HPLC trace for Hb J-Paris-I

The spectrum obtained by ESI-MS analysis of the blood sample diluted 500-fold is shown in Figure 5.3.4.3. and reveals an α -chain heterozygote at mass 15,170.18 Da, 44 Da heavier and+ 26.5% of the intensity of the total α -chains. The mass increase of 43.80 Da heavier than the normal α -chain, implies the mutation is Ala \rightarrow Asp, as this mutation is the only possibility that gives a significant negative polarity change. Cys \rightarrow Phe (TGC \rightarrow TTC) would give the same mass change, but would not result in a charge change and can be discounted.

Figure 5.3.4.4. shows the diagnostic part of the spectra from (a) normal Hb and (b) the variant heterozygote. The increase in intensity of the m/z 576.38 peak from 23% to 38% shows that the mutation occurs in the α T3 peptide. There are two possible sites of mutation in the α T3 tryptic peptide; α 12Ala \rightarrow Asp (Hb J-Paris-I) and α 13Ala \rightarrow Asp (Hb Little Waltham).

Figure 5.3.4.5. shows product ion spectra of the $\alpha T3^+$ tryptic fragments of (a) normal Hb and (b) the variant under investigation. The occurrence of all the y" ions up to and including y"₄ at the same mass in both the normal and variant precursor ion spectra, and the mass increase of the b₁ ion at m/z 187.0 in the lower panel, identifies the mutation as $\alpha 12Ala \rightarrow Asp$, Hb J-Paris-I.

5.3.5. αT4 - Hb LeLamentin (α20His→Gln)

Hb LeLamentin is the result of a mutation in which the $\alpha 20$ amino acid residue is changed from His to Gln through a single base change in the codon, CAC \rightarrow CAA.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.3.5.2.) showed an abnormally high P3 response (23.4%). The high P3 (mainly due to the variant) implies the variant causes a negative polarity change.

Figure 5.3.5.2. ce-HPLC trace for Hb LeLamentin

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.3.5.3.) revealed an α -chain heterozygote in which the mass of the variant chain was 8.96 Da lower than normal at 15,117.38 Da, and the intensity of the variant chain was 23.6% of total α -chains.

There is only one single amino acid change that can give 9 Da decrease in mass by a single base change in the codon, namely His \rightarrow Gln (10 possibilities).

Figure 5.3.5.4. shows the diagnostic part of the tryptic digest spectrum for (a) normal Hb and (b) the variant Hb. The appearance of a new $\alpha T4^{2+}$ tryptic fragment at m/z 760.86 indicates that the mutation is

in the α T4 tryptic peptide and identifies the mutation as α 20His \rightarrow Gln, since it is the only possibility in this peptide.

Figures 5.3.5.5. shows part of the product ion mass spectra for the $\alpha T4^{2+}$ precursors of (a) normal Hb and (b) the variant Hb. The -9 Da mass change in the y"₁₂ ion at *m*/*z* 1293.5 and no change in the y"₁₁ ion at *m*/*z* 1,165.2 confirms the mutation as $\alpha 20$ His \rightarrow Gln, Hb LeLamentin.

Further evidence for the mutation is shown in the lower panel of Figure 5.3.5.6. with the appearance of a Gln immonium ion at m/z 101.1 and no His immonium ion at m/z 110.0, as well as the mass decrease of the b₄ fragment at m/z 356.2.

5.3.6. αT4 - Hb Fontainebleau (α21Ala→Pro)

Hb Fontainebleau is the result of a mutation in which the $\alpha 21$ amino acid residue is changed from Ala to Pro through a single base change in the codon, GCT \rightarrow CCT.

Figure 5.3.6.1. Sequence of the Hb Fontainebleau αT4 tryptic peptide.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.3.6.2.) showed an abnormal peak that eluted at 2.77 min, just after A_0 , suggesting no charge change in the variant.

Figure 5.3.6.2. ce-HPLC trace for Hb Fontainebleau

The spectrum obtained by ESI-MS analysis of the blood sample diluted 500-fold (Figure 5.3.6.3.) revealed an α -chain variant at 15,151.65 Da, 25.23 Da higher in mass than the normal α -chain. The signal is of low intensity, and may be affected by the Na adduct of the α -chain, so consideration is given to potential mutations of +25 Da and +26 Da: Met \rightarrow Arg (discounted as no significant charge change by ce-HPLC), Ala \rightarrow Pro (21 possibilities), His \rightarrow Tyr (10 possibilities), Ser \rightarrow Ile (11 possibilities) or Ser \rightarrow Leu (11 possibilities).

Figure 5.3.6.4. shows the diagnostic region of the 30-minute digest spectrum for (a) normal Hb and (b) the variant Hb. A signal is observed in the lower panel at m/z 778.40, corresponding to a 26.02 Da mass

increase in the $\alpha T4^{2+}$ ion. A corresponding mass increase is also observed for the variant $\alpha T4^{3+}$ at m/z 519.29 in the lower panel of Figure 5.3.6.5. There are five potential sites of mutation in the $\alpha T4$ tryptic fragment include: $\alpha 20$ His \rightarrow Tyr (Hb Necker Enfants-Malades), $\alpha 21$ Ala \rightarrow Pro (Hb Fontainebleau) and three, previously unreported, Ala \rightarrow Pro mutations at $\alpha 19$, $\alpha 26$ and $\alpha 28$.

Figure 5.3.6.6. shows the product ion spectrum of the $\alpha T4^{2+}$ tryptic peptide for (a) normal Hb and (b) the variant Hb. No mass change is observed in the lower panel for the b₄ fragment at m/z 365.3, nor the y" series to y"₁₀ at m/z 1,094.6. The 26 Da mass increase is observed for the y"₁₁ fragment at m/z 1,191.7 confirms the mutation as $\alpha 21Ala \rightarrow$ Pro, Hb Fontainebleau.

5.3.7. αT4 - Hb Prato (α31Arg→Ser)

Hb Prato is the result of an α -chain mutation in which the α 31 amino acid residue is changed from Arg to Ser through a single base change in the codon AGG \rightarrow AGC or AGT. The mutation of the Arg residue results in the loss of a tryptic cleavage site, together with the formation of an α T(4-5) tryptic peptide.

	a T4 Peptide														αT5 Peptide										
α	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31		32	33	34	35	36	37	38	39	40
	V	G	А	Η	Α	G	Е	Y	G	Α	E	А	L	Е	R		М	F	L	S	F	Р	Т	Т	K
															↓										
	V	G	А	Η	Α	G	E	Y	G	А	Ε	А	L	E	S	М	F	L	S	F	Р	Т	Т	K	

Figure 5.3.7.1. Sequence of the Hb Prato α T(4-5) tryptic peptide.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.3.7.2) showed an abnormally high P3 value (14.3%). The high P3 (mainly due to the variant) implies the variant causes a negative polarity change.

Figure 5.3.7.2. ce-HPLC trace for Hb Prato

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.3.7.3.) revealed an α -chain heterozygote in which the mass of the variant chain at 15,057.23 Da, 69.14 Da lighter than normal. The intensity of the variant chain was 21.0% of total α -chains. A mass difference of -69 Da can only be achieved with an Arg \rightarrow Ser nutation (3 possibilities). As indicated above, loss of an Arg residue would result in the formation of a 'double' tryptic peptide. Possible sites of mutation are α 31, α 92 or α 141, though α 92 is unlikely as it would require two base changes in the codon.

Figure 5.3.7.4. shows the diagnostic part of the tryptic digest spectrum for (a) normal Hb and (b) the variant Hb. A signal is observed in the lower panel at m/z 838.43 that is consistent with the formation of

an $\alpha T(4-5)^{3+}$ tryptic fragment, and this is further supported by the signal in the lower panel of Figure 5.3.7.5. at *m/z* 1257.06 ($\alpha T(4-5)^{2+}$).

Figure 5.2.6.6. shows the product ion spectrum of the $\alpha T(4-5)^{3+}$ precursor, and the spectrum is fully consistent with the expected sequence of the $\alpha T(4-5)$ tryptic peptide, confirming the mutation as $\alpha 31$ Arg \rightarrow Ser, Hb Prato.

5.3.8. αT5 - Hb Chelsea (α38Thr→Ala)

Hb Chelsea (novel) is the result of an α -chain mutation in which the α 38 amino acid residue is changed from Thr \rightarrow Ile through a single base change in the codon ACC \rightarrow ATC.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.3.8.2.) presented a shoulder that appeared slightly later than A_0 , suggesting no charge change in the variant.

Figure 5.3.8.2. ce-HPLC trace for Hb Chelsea

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.3.8.3.) revealed an α -chain heterozygote in which the α -chain was 23.5% of total α -chains and the mass of the variant chain was 15,138.36 Da, 11.90 Da heavier than normal. The only mutation that gives a 12 Da mass increase and fits the table of nominal mass and amino acid changes genetically governed by a single base change in the codon is Thr \rightarrow Ile (9 possibilities).

Figures 5.3.8.4. shows the diagnostic parts of the tryptic digest spectra from (a) normal Hb and (b) the variant Hb. The appearance of a peak at m/z 542.30 is consistent with the variant occurring in the $\alpha T5^{2+}$ tryptic fragment. This is further supported by the appearance of an $\alpha T5^+$ signal at m/z 1,083.58 in the lower panel of Figure 5.3.8.5. These results place the mutation in the $\alpha T5$ peptide, with the possible sites of mutation as $\alpha 38$ Thr \rightarrow Ile (Hb Chelsea) or $\alpha 39$ Thr \rightarrow Ile (not previously reported), both of which can be achieved through a single base change in the codon ACC \rightarrow ATC.

Figure 5.3.8.6 shows the partial product ion spectra of the $\alpha T5^+$ ion from (a) normal Hb and (b) the variant Hb. A 12 Da increase is observed for the y"₃ fragment at m/z 361.3 and an internal fragment, PI, at m/z 211.2 in the lower panel. These data identify the mutation as mutation as $\alpha 38$ Thr \rightarrow Ile, Hb Chelsea.

This variant was first reported following analysis by mass spectrometry.

5.3.9. αT6 - Hb Riccarton (α51Gly→Ser)

Hb Riccarton is the result of an α -chain mutation in which the α 51 amino acid residue is changed from Gly to Ser through a single base change in the codon GGC \rightarrow AGC.

A blood sample was submitted for analysis by mass spectrometry because of a signal observed on the HPLC trace (Figure 5.3.9.2.) with an unresolved component apparent tailing the A_0 peak at 3.12 min.

The variant was silent on the ce-HPLC trace (Figure 5.3.9.3.) indicating no charge change as the result of the mutation.

Figure 5.3.9.3. ce-HPLC trace for Hb Riccarton

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.3.9.4.) revealed an α -chain heterozygote in which the α -chain was 20.6% of total α -chains and the mass of the variant chain was 15,156.39, 30.01 Da heavier than normal. A single codon change giving a mass increase of +30 Da and no charge change infers Ala \rightarrow Thr (21 possibilities), Gly \rightarrow Ser (7 possibilities) or Thr \rightarrow Met (9 possibilities).

Figure 5.3.9.5. shows the diagnostic part of the tryptic digest spectra from (a) normal Hb and (b) the variant Hb. The appearance of a peak at m/z 622.33 in the lower panel is indicative of a +30 Da mass change in the $\alpha T6^{3+}$ tryptic fragment. There are two possible sites of mutation in this peptide at $\alpha 51$ Gly \rightarrow Ser (Hb Riccarton) or $\alpha 53$ Ala \rightarrow Thr (not previously reported).

Figure 5.3.9.6. shows the partial product ion mass spectrum $\alpha T6^{3+}$ ion from (a) normal Hb and (b) the variant Hb. The mass change of the y"₆ fragment at m/z 619.5, and subsequent y" fragments, identifies the mutation as $\alpha 51$ Gly \rightarrow Ser, Hb Riccarton.

5.3.10. aT6 - Hb Shimonoseki (a54Gln→Arg)

Hb Shimonoseki is the result of an α -chain mutation in which the α 54 amino acid residue is changed from Gln to Arg through a single base change in the codon CAG \rightarrow CGG.

The mutation to the Arg residue results in an additional tryptic cleavage product, as shown in Figure 5.3.10.1.

	a T6 Peptide																
α	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	
	Т	Y	Р	F	Η	F	D	L	S	Н	G	S	А	Q	V	Κ	
	α T6a													\downarrow		αΊ	бb
	Т	Y	Р	F	Η	F	D	L	S	Н	G	S	А	R		V	K

Figure 5.3.10.1. Sequence of the Hb Shimonoseki αT6 tryptic peptides.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.3.10.2.) showed an abnormally high response in the S-window (20.9%) at 4.39 min, indicating a positive charge change.

Figure 5.3.10.2. ce-HPLC trace for Hb Shimonoseki.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.3.10.3.) revealed an α -chain heterozygote in which the α -chain was 19.7% of total α -chains and the mass of the variant chain was 15,154.42 Da, 27.95 Da heavier than normal. A single codon change giving a mass increase of +28 Da could be Ala \rightarrow Val (neutral), Gln \rightarrow Arg (positive, 1 possibility, Hb Shimonoseki) or Lys \rightarrow Arg (neutral).

In the human α -chain, there is only one Gln residue that could mutate by a single base change in the codon, resulting in an additional peptide cleavage with trypsin at α 54Gln \rightarrow Arg.

Figures 5.3.10.4. shows the diagnostic region of the tryptic digest spectrum for (a) normal Hb and (b) the variant Hb. The appearance of a peak at m/z 817.88 is consistent with the formation of a new α T6a²⁺ tryptic fragment from a mutation at α 54. The new tryptic fragment is also observed in the lower panel of Figure 5.3.10.5. at m/z 545.48, confirming the mutation as α 54Gln \rightarrow Arg, Hb Shimonoseki.

5.3.11. αT6 - Hb Shaare-Zedek (α56Lys→Glu)

Hb Shaare-Zedek is the result of an α -chain mutation in which the α 56 amino acid residue is changed from Lys to Glu through a single base change in the codon AAG \rightarrow GAG.

The mutation of the Lys residue results in the loss of a tryptic cleavage product, and the formation of a combined $\alpha T(6-7)$ tryptic peptide.

					α T6 Peptide															α T7 Peptide					
α	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56		57	58	59	60				
	Т	Y	Р	F	Η	F	D	L	S	Η	G	S	А	Q	V	Κ		G	Η	G	Κ				
	Variant α T(6-7) Peptide															\checkmark									
	Т	Y	Р	F	Η	F	D	L	S	Η	G	S	А	Q	V	E	G	Η	G	Κ					
														S	haa	re Z	ede	k							

Figure 5.3.11.1. Sequence of the Hb Shaare-Zedek α T(6-7) tryptic peptide.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.3.11.2.) showed an abnormally high F response (22.7%), suggesting a negative charge change in the variant.

Figure 5.3.11.2. ce-HPLC trace for Hb Shaare-Zedek

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.3.11.3.) revealed a β -chain with a mass lower than expected (15,867.01 Da), following calibration of the mass scale from the α -chain. According to Table 2.1 (Section 2.4.4.), a negative change in the apparent mass of the β -chain coupled with a negative charge change inferred from the ce-HPLC Data, assigns the variant as $(\alpha$ -chain + 1 Da) heterozygote.

Mutation from a single codon change offers four possibilities for a single amino acid change giving rise to a 1 Da increase in mass: Asn \rightarrow Asp (4 possibilities), Gln \rightarrow Glu (1 possibility) or Lys \rightarrow Glu (11 possibilities). Coupled with the negative charge change observed on the ce-HPLC trace, the most likely change is Lys \rightarrow Glu which would all lead to the loss of a tryptic fragment on digestion when compared to normal Hb.

Figure 5.3.11.4. shows the diagnostic part of the tryptic digest spectrum for (a) normal Hb and (b) the variant Hb. The appearance of a signal at m/z 738.67 in the lower panel is consistent with the formation of an $\alpha T(6-7)^{3+}$ tryptic fragment, and implies the loss of a tryptic cleavage site at $\alpha 56$ Lys \rightarrow Glu. This is further supported by the data in the lower panel of Figure 5.3.11.5. with the appearance of a signal at m/z 1107.57 in the lower panel attributable to the $\alpha T(6-7)^{2+}$ tryptic fragment.

Figure 5.3.11.6. shows the partial product ion spectrum of the $\alpha T(6-7)^{2+}$ tryptic fragment of the variant Hb, and the data are consistent with the proposed sequence of the $\alpha T(6-7)$ tryptic fragment of $\alpha 56Lys \rightarrow Glu$, Hb Shaare-Zedek.

5.3.12. αT7 - Hb L-Persian Gulf (α57Gly→Arg)

Hb L-Persian Gulf is the result of an α -chain mutation in which the α 57 amino acid residue is changed from Gly to Arg through a single base change in the codon GGC \rightarrow CGC.

The mutation to the Arg residue results in an additional tryptic cleavage product, as shown in Figure 5.3.12.1.

Figure 5.3.12.1. Sequence of the Hb L-Persian Gulf α T7 tryptic peptides.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.3.12.2.) showed an abnormally high response in the S-window (18.6%) at 4.50 min, indicating a positive charge change as a result of the mutation.

Figure 5.3.12.2. ce-HPLC trace for Hb L-Persian Gulf.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.3.12.3.) revealed an α -chain heterozygote with a variant observed at 15,225.47 Da, 99.11 Da heavier than normal and 21.5% of total α -chains. A single codon change giving a mass increase of +99 Da could be Gly \rightarrow Arg (positive) or Ser \rightarrow Trp (neutral). The positive shift in the ce-HPLC trace indicates a positive charge change and infers the Gly \rightarrow Arg mutation (7 possibilities).

Figure 5.3.12.4. shows the diagnostic part of the tryptic digest spectra from (a) normal Hb and (b) the variant Hb. The appearance of a peak at m/z 341.21 is consistent with the mutation α 57Gly \rightarrow Arg, and thus the formation of a new α T7b peptide, HGK.

Figure 5.3.12.5 shows a comparison of the product ion spectra from m/z 341.4 from (a) normal Hb and (b) the variant Hb. The data in the lower panel are consistent with the expected sequence of the new α T7b tryptic peptide as HGK, and the purported mutation α 57Gly \rightarrow Arg, Hb L-Persian Gulf. However, the variant is **not** positively identified.

5.3.13. αT9 - Hb Q-India (α64Asp→His)

Hb Q-India is the result of an α -chain mutation in which the $\alpha 64$ amino acid residue is changed from Asp to His through a single base change in the codon GAC \rightarrow CAC.

Figure 5.3.13.1. Sequence of the Hb Q-India α T9 tryptic peptide.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.3.13.2.) showed an abnormally high unknown response (18.0%) at 4.80 min. The high unknown response indicates that the variant causes a significant positive charge change.

Figure 5.3.13.2. ce-HPLC trace for Hb Q-India.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.3.13.3.) revealed an α -chain heterozygote at 15,148.14 Da, 21.75 Da heavier than normal with the variant α -chain being 20.2% of total α -chains. A single codon change giving a mass increase of +22 Da could only be Asp \rightarrow His (8 possibilities) and is consistent with the positive charge change observed in the ce-HPLC trace.

Figure 5.3.13.4. shows the diagnostic part of the tryptic digest spectra from (a) normal Hb and (b) the variant Hb. The appearance of a peak at m/z 755.67 in the variant spectrum is consistent with the Asp \rightarrow His mutation in the α T9⁴⁺ tryptic fragment. There are four possible sites of mutation in this peptide from a single base change in the codon; α 64Asp \rightarrow His (Hb Q-India), α 74Asp \rightarrow His (Hb Q-Thailand), α 75Asp \rightarrow His (Hb Q-Iran) or α 85Asp \rightarrow His (Hb Canuts).

Figure 5.3.13.5. shows product ion spectra from the $\alpha T9^{4+}$ tryptic fragment of (a) normal Hb and (b) the variant Hb. No mass change in the b₂ fragment at m/z 171.1, and the +22 Da mass change in the b₃ fragment at m/z 308.2 in the lower panel identifies the mutation as $\alpha 64Asp$ →His, Hb Q-India.

5.3.14. αT9 - Hb G-Philadelphia (α68Asn→Lys)

Hb G-Philadelphia is the result of an α -chain mutation in which the $\alpha 68$ amino acid residue is changed from Asn to Lys through a single base change in the codon AAC \rightarrow AAG or AAA.

The mutation to the Lys residue results in an additional tryptic cleavage product, as shown in Figure 5.3.14.1.

	a T9 Peptide																													
α	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	
	V	А	D	А	L	Т	N	А	V	А	Η	V	D	D	Μ	Р	Ν	А	L	S	А	L	S	D	L	Η	Α	Η	Κ	
αT9a Peptide 🛛 🗸																		0	ı T91	o Pe	ptid	e								
	V	А	D	A	L	Т	K		A	V	А	Η	V	D	D	Μ	Р	Ν	Α	L	S	А	L	S	D	L	Η	Α	Η	K

Figure 5.3.14.1. Sequence of the Hb G-Philadelphia αT9 tryptic peptides.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.3.14.2.) showed an abnormally high response in the D-window (31.2%) at 4.11 min, indicating a positive charge change.

Figure 5.3.14.2. ce-HPLC trace for Hb G-Philadelphia.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.3.14.3.) revealed an α -chain heterozygote at 15,140.37 Da in which the α -chain was approximately 36% of total α -chains and the mass of the variant chain was 13.91 Da heavier than normal. A single codon change giving a mass increase of +14 Da could be Asn \rightarrow Lys (4 possibilities), Asp \rightarrow Glu (8 possibilities), Gly \rightarrow Ala (7 possibilities), Ser \rightarrow Thr (11 possibilities), Val \rightarrow Ile (13 possibilities) or Val \rightarrow Leu (13 possibilities).

However, the shift in the ce-HPLC trace shows a positive charge change and indicates the Asn \rightarrow Lys mutation is most likely. Mutation to Lys will likely result in an additional fragment on tryptic digestion.

Figure 5.3.14.4. shows the diagnostic part of the tryptic digest spectra from (a) normal Hb and (b) the variant Hb. The appearance of peaks at m/z 717.49 (α T9a⁺) and m/z 771.74 (α T9b³⁺) are consistent with the formation of two new tryptic peptides from the α T9 peptide with the mutation α 68Asn \rightarrow Lys, and the formation of an additional tryptic cleavage site at α 68. Further evidence is shown in the lower panel of Figure 5.3.14.5. for the tryptic digest of the variant Hb and the appearance of the α T9b²⁺ signal at m/z 1,157.08. These data confirm the mutation as α 68Asn \rightarrow Lys, Hb G-Philadelphia.

5.3.15. αT9 - Hb Q-Thailand (α74Asp→His)

Hb Q-Thailand is the result of an α -chain mutation in which the α 74 amino acid residue is changed from Asp to His through a single base change in the codon GAC \rightarrow CAC.

α T9 Peptide

Figure 5.3.15.1. Sequence of the Hb Q-Thailand αT9 tryptic peptide.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.3.15.2.) showed an abnormally high response in the S-window (31.4%) at 4.66 min, indicating a positive charge change.

Figure 5.3.15.2. ce-HPLC trace for Hb Q-Thailand.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.3.15.3.) revealed an α -chain heterozygote at 15,148.40 Da, 22.00 Da heavier than normal, and 31.9% of total α -chains. A single codon change giving a mass increase of 22 Da could only be Asp \rightarrow His (8 possibilities, positive charge change).

Figure 5.3.14.4. shows the diagnostic parts of the tryptic digest spectra from (a) normal Hb and (b) the variant Hb. A new peak is observed in the lower panel at m/z 755.44 corresponding to a mass increase of 22 Da in the $\alpha T9^{4+}$ tryptic fragment. This is further supported by the change in intensity ratio of the $\alpha T9^{3+}$ tryptic fragments at m/z/999.54 and m/z 1,006.96 in the lower trace (variant) of Figure 5.3.14.5. compared to the same peaks in the upper panel. There are four possible sites of mutation in the $\alpha T9$

peptide that could give rise to a +22 Da mass change; $\alpha 64Asp \rightarrow His$ (Hb Q-India), $\alpha 74Asp \rightarrow His$ (Hb Q-India), $\alpha 75Asp \rightarrow His$ (Hb Q-Iran) or $\alpha 85Asp \rightarrow His$ (Hb Canuts).

Figures 5.3.14.6. shows the partial product ion spectra for the $\alpha T9^{3+}$ precursor for (a) normal Hb and (b) the variant Hb. No mass change is observed for the y"-series ions up to y"₁₆, whereas the y"₁₇ ion shows an increase of 22 Da at m/z 1,857.6. No mass change is observed for the b₁₂ fragment at m/z 1,163.1, but a new signal is observed in the lower panel for the b₁₃ fragment at m/z 1,324.4, confirming the mutation as α 74 Asp→His, Hb Q-Thailand.

5.3.16. αT9 - Hb Stanleyville-II (α78Asn→Lys)

Hb Stanleyville-II is the result of an α -chain mutation in which the α 78 amino acid residue is changed from Asn to Lys through a single base change in the codon AAC \rightarrow AAG.

The mutation to the Lys residue results in an additional tryptic cleavage product, as shown in Figure 5.3.16.1.

a T9 Peptide																														
α	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	
	V	Α	D	А	L	Т	Ν	Α	V	А	Η	V	D	D	Μ	Р	Ν	А	L	S	А	L	S	D	L	Η	Α	Η	Κ	
	α T9a Peptide													\downarrow	α T9b Peptide															
	V	А	D	Α	L	Т	N	Α	V	Α	Η	V	D	D	М	Р	K		А	L	S	А	L	S	D	L	Η	А	Η	K

Figure 5.3.16.1. Sequence of the Hb Stanleyville-II α T9 tryptic peptides.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.3.16.2.) showed an abnormally high response in the S-window (20.4%) at 4.29 min, suggesting a positive charge change.

Figure 5.3.16.2. ce-HPLC trace for Hb Stanleyville-II.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.3.16.3.) revealed an α -chain heterozygote at 15,140.18 Da, 13.84 Da heavier than normal and approximately 28% of total α -chains. A single codon change giving a mass increase of +14 Da could be Asn→Lys (4 possibilities), Asp→Glu (8 possibilities), Gly→Ala (7 possibilities), Ser→Thr (11 possibilities), Val→Ile (13 possibilities) or Val→Leu (13 possibilities). However, the shift in the ce-HPLC trace shows a positive charge change and indicates the Asn→Lys mutation. Mutation to Lys will likely result in an additional fragment on tryptic digestion.

Figure 5.3.16.4. shows the diagnostic part of the tryptic digest spectra from (a) normal Hb and (b) the variant Hb. The appearance of peaks at m/z 589.96 (α T9a³⁺) and m/z 632.37 (α T9b²⁺) is consistent with the formation of two new tryptic peptides from the α T9 peptide with the mutation α 78Asn \rightarrow Lys, and the additional tryptic cleavage site at α 78. Further evidence is show in the lower panel of Figure 5.3.16.5. for the tryptic digest of the variant Hb and the appearance of the α T9a²⁺ signal at m/z 883.94. These data confirm the mutation as α 78Asn \rightarrow Lys, Hb Stanleyville-II.

5.3.17. αT9 - Hb M-Iwate (α87His→Tyr)

Hb M-Iwate is the result of an α -chain mutation in which the α 87 amino acid residue is changed from His to Tyr through a single base change in the codon CAC \rightarrow TAC.

Figure 5.3.17.1. Sequence of the Hb M-Iwate α T9 tryptic peptide.

No ce-HPLC trace was available for this variant.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.3.17.2.) revealed an α -chain heterozygote at 15,152.08 Da, 25.67 Da heavier than normal and 30.2% of total α -chains. A single codon change giving a mass increase of +26 Da could be Ala \rightarrow Pro (21 possibilities), His \rightarrow Tyr (10 possibilities), Ser \rightarrow Ile (11 possibilities) or Ser \rightarrow Leu (11 possibilities).

Figure 7.3.17.3. shows part of the tryptic digest spectrum for (a) normal Hb and (b) the variant Hb. The appearance of a peak at m/z 1,008.54 in the lower panel is consistent with the formation of a new $\alpha T9^{3+}$ tryptic fragment. Within the $\alpha T9$ peptide, there are twelve possible sites of mutation that could arise from a single base change in the codon, <u>except</u>: $\alpha 81$ Ser(TGC) \rightarrow Leu/Ile and $\alpha 84$ Ser(AGC) \rightarrow Leu. Of the remaining possibilities, seven have not previously been reported. The mutation in the $\alpha T9$ peptide is further supported by the appearance of the $\alpha T9^{4+}$ ion at m/z 756.66 in the lower panel of Figure 5.3.17.4. and the $\alpha T9^{2+}$ ion at m/z 1,512.25 in Figure 5.3.17.5.

Figure 5.3.17.6. shows the partial product ion spectra of the $\alpha T9^{3+}$ tryptic fragment of (a) normal Hb and (b) the unknown variant. The 26 Da mass increase at y"₄ at m/z 518.4 in the lower panel identifies the mutation as $\alpha 87$ His \rightarrow Tyr, Hb M-Iwate.

Figure 5.3.17.7. shows the diagnostic part of the chymotryptic digest spectrum of (a) normal Hb and (b) the variant Hb. The presence of the variant $\alpha(81-87)^+$ ion at m/z 768.38 is fully consistent with the mutation α 87His \rightarrow Tyr, Hb M-Iwate. Figure 5.3.17.8. shows the product ion spectrum of the new chymotryptic fragment, α CT9⁺, of Hb M-Iwate (α 87His \rightarrow Tyr), and this spectrum is fully consistent with the sequence of the variant chymotryptic peptide

5.3.18. αT9 - Hb J-Broussais (α90Lys→Asn)

Hb J-Broussais is the result of an α -chain mutation in which the α 90 amino acid residue is changed from Lys to Asn through a single base change in the codon AAG \rightarrow AAC or AAT.

The mutation of the 90Lys residue results in the loss of a tryptic cleavage product, and the formation of a combined $\alpha T(9-10)$ tryptic peptide.

	a T9 Peptide																α T10 Pep															
α	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90		91	92
	V	А	D	А	L	Т	Ν	А	V	А	Н	V	D	D	Μ	Р	Ν	А	L	S	А	L	S	D	L	Н	А	Н	Κ		L	R
																													\downarrow			
	V	А	D	А	L	Т	Ν	А	V	А	Η	V	D	D	Μ	Р	Ν	А	L	S	А	L	S	D	L	Η	А	Η	Ν	L	R	

Figure 5.3.18.1. Sequence of the Hb J-Broussais $\alpha T(9-10)$ tryptic peptide.

A blood sample was submitted for analysis by ESI-MS because the ce-HPLC trace (Figure 5.3.18.2.) showed an abnormally high P3 response (24.5%), indicating that there is a negative polarity change in the variant.

Figure 5.3.18.2. ce-HPLC trace for Hb J-Broussais.

The spectrum obtained by ESI-MS analysis of the blood sample diluted 500-fold is shown in Figure 5.3.18.3. It reveals an α -chain heterozygote in which the variant-chain is 20.3% of the total α -chains and has a mass of 15,112.36 Da, 14.05 Da lower than the normal α -chain. This suggests, coupled with the negative polarity change observed in the ce-HPLC trace that, from a single base change in the codon, the most likely mutation is Lys \rightarrow Asn (11 possibilities).

Figure 5.3.18.4. shows a diagnostic part of the tryptic digest spectra from (a) normal Hb and (b) the variant Hb. The appearance of a triply charged ion at m/z 1,084.55 in the lower panel is consistent with the formation of a combined $\alpha T(9-10)$ peptide with the mutation $\alpha 90$ Lys \rightarrow Asn, and the loss of the $\alpha T10$ fragment that is observed for the normal Hb sample. This is further supported by the appearance of a quadruply charged ion at m/z 813.94 (calculated m/z 813.91) for the $\alpha T(9-10)$ peptide in Figure 5.3.18.5. Note: The m/z value in this case refers to the second isotope of the isotopic envelope.

Additionally, in normal Hb samples, the $\alpha T11^{2+}$ tryptic peptide is not normally observed following tryptic digestion. However, Figure 5.3.18.6. shows presence of the $\alpha T11^{2+}$ at m/z 409.74 for the variant sample. Figure 5.3.18.7 shows the product ion spectrum of the $\alpha T11^{2+}$ tryptic fragment of Hb J-Broussais (α 90Lys \rightarrow Asn), and these data are fully consistent with the sequence of the $\alpha T11$ peptide.

Figure 5.3.18.8. shows the product ion spectrum for the $\alpha T(9-10)^{3+}$ precursor. The data, in particular the y"₂ (*m*/*z* 288.2) and y"₃ (*m*/*z* 402.3) fragments, confirm the mutation as $\alpha 90$ Lys \rightarrow Asn, Hb Broussais.

5.3.19. αT11 - Hb Setif (α94Asp→Tyr)

Hb Setif is the result of an α -chain mutation in which the α 94 amino acid residue is changed from Asp to Tyr through a single base change in the codon GAC \rightarrow TAC.

Figure 5.3.19.1. Sequence of the Hb Setif α T11 tryptic peptide.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.3.13.2.) showed an abnormally high unknown response (16.7%) at 4.72 min, indicating a positive charge change arising from the mutation.

Figure 5.3.19.2. ce-HPLC trace for Hb Setif.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.3.19.3.) revealed an α -chain heterozygote in which the α -chain was 19.1% of total α -chains at a mass of 15,173.98 Da, 47.64 Da heavier than normal. A single codon change giving a mass increase of +48 Da could be Val \rightarrow Phe (neutral) or Asp \rightarrow Tyr (positive). The shift in the ce-HPLC trace indicates a positive charge change and infers the Asp \rightarrow Tyr mutation (8 possibilities).

Figure 5.3.19.4. shows a diagnostic part of the tryptic digest spectra from (a) normal Hb and (b) the variant Hb. The appearance of a peak at m/z 866.48 for the variant α T11⁺ tryptic fragment in the lower panel is consistent with the mutation occurring in the α T11 peptide, and could only be α 94Asp \rightarrow Tyr,

Hb Setif. This is further supported by the presence of the doubly charged $\alpha T11^{2+}$ tryptic fragment in the lower panel of Figure 5.3.19.5. at m/z 433.76.

In Figure 5.3.19.6. the very low abundance of the $\alpha T(10-11)^{2+}$ ion, together with the variant $\alpha T11$ peptide in Hb Setif, strongly supports the view that the cleavage at $\alpha 92$ Arg is normally hindered by $\alpha 94$ Asp.

Figure 5.3.4.7. shows product ion spectra from (a) normal $\alpha T11^{2+}$ precursor ion and (b) the variant $\alpha T11^{2+}$ precursor ion. The immonium ion at m/z 136.0 confirms the presence of Tyr in the variant. The occurrence of all the y" ions up to and including y"₆ at the same m/z in both the normal and variant precursor ion spectra, and the mass increase of 48 Da in the y"₆²⁺ fragment in the lower panel confirms the mutation as $\alpha 94$ Asp \rightarrow Tyr, Hb Setif.

5.3.20. αT12 - Hb Hopkins-II (α112His→Asp)

Hb Hopkins-II is the result of an α -chain mutation in which the α 112 amino acid residue is changed from His to Asp through a single base change in the codon CAC \rightarrow GAC.

	a T12 Peptide																											
α	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
	L	L	S	Н	С	L	L	V	Т	L	А	А	Н	L	Р	А	Е	F	Т	Р	А	V	Н	А	S	L	D	Κ
													\downarrow															
													D															

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.3.5.2.) showed an abnormally high P3 response (15.8%) at 1.54 min and implies a negative charge change.

Figure 5.3.20.2. ce-HPLC trace for Hb Hopkins-II.

The spectrum obtained by ESI-MS analysis of the blood sample diluted 500-fold is shown in Figure 5.3.20.3. and reveals an α -chain heterozygote in which the variant-chain is 14.6% of the total α -chains at 15,104.48 Da, 21.92 Da lighter than the normal α -chain. The mass difference indicates that the mutation can only be His \rightarrow Asp (10 possibilities) through a single base change in the codon, and this is also supported by the negative polarity change in the ce-HPLC trace.

Figure 5.3.20.4. shows the diagnostic part of the spectra from (a) normal Hb and (b) the variant Hb heterozygote. The appearance of a peak at m/z 1,046.01 in the variant spectrum supports the mutation His \rightarrow Asp occurring in the α T(12-13) peptide, in which there are three possible sites of mutation through

a single base change in the codon - $\alpha 103$ His \rightarrow Asp (not previously reported), $\alpha 103$ His \rightarrow Asp (Hb Hopkins II) and $\alpha 122$ His \rightarrow Asp (not previously reported).

Figure 5.3.20.5. shows partial product ion spectra from (a) normal $\alpha T(12-13)^{4+}$ precursor ion and (b) the variant $\alpha T(12-13)^{4+}$ precursor ion. The occurrence of all the b ions up to and including b_{12}^{2+} at the same mass in both the normal and variant precursor ion spectra, coupled with the 22 Da mass decrease in the b_{13}^{2+} (*m*/z 676.3) in the variant spectrum, identifies the mutation as $\alpha 112$ His \rightarrow Asp, Hb Hopkins II. The identification is further supported in Figure 5.3.20.6. with the 22 Da mass change in the y"₂₈²⁺ ion at *m*/z 1,474.0 in the variant spectrum.

.

5.3.21. αT12 - Hb J-Meerut (α120Ala→Glu)

Hb J-Meerut is the result of an α -chain mutation in which the α 120 amino acid residue is changed from Ala to Glu through a single base change in the codon GCG \rightarrow GAG. The codons for the six Ala amino acid residues in the α T(12-13) peptide are:

NL	NL	NL	J-Meerut	NL	NL
α110	α111	α115	α120	α123	α130
GCC	GCC	GCC	GCG	GCC	GCT

The Glu codons are GAA and GAG, thus only α 120Ala (GCG) can mutate to Glu (GAG) by a single base change in the codon.

 $\alpha T(12-13) Peptide$ $\alpha 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139$ L L S H C L L V T L A A H L P A E F T P A V H A S L D K F L A S V S T V L T S K \downarrow E

Figure 5.3.21.1. Sequence of the Hb J-Meerut α T(12-13) tryptic peptide.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.3.21.2.) showed an abnormally high unknown response (19.4%) at 1.95 min, indicating a negative charge change.

Figure 5.3.21.2. ce-HPLC trace for Hb J-Meerut.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.3.21.3.) revealed an α -chain heterozygote in which the α -chain was 21.5% of total α -chains and the mass of the variant chain was 15,184.52, 58.14 Da heavier than normal. A single codon change giving a mass increase of +58 Da could

be Ala \rightarrow Glu (negative, 21 possibilities) or Gly \rightarrow Asp (neutral, 7 possibilities). The shift in the ce-HPLC trace indicates a negative charge change and infers the Ala \rightarrow Glu mutation.

Figure 5.3.21.4. shows the diagnostic part of the spectra from (a) normal Hb and (b) the variant Hb. The appearance of a peak at m/z 852.97 ($\alpha T(12-13)^{5+}$) in the lower panel shows that the mutation occurs in the $\alpha T(12-13)$ peptide. There are six possible sites for Ala \rightarrow Glu mutation, but only $\alpha 120$ Ala (GCG) can mutate to Glu (GAG) through a single base change in the codon. Further evidence supporting the mutation in the $\alpha T(12-13)$ is shown in Figure 5.3.21.5. with the appearance of the $\alpha T(12-13)^{4+}$ at m/z 1,066.13 in the variant spectrum.

Figures 5.3.21.6. and 5.3.21.7. show diagnostic mass ranges from the product ion spectra of the $\alpha T(12-13)^{4+}$ from (a) normal Hb and (b) the variant Hb. The 57.8 Da increase in mass for the y"₂₁ (*m/z* 2,229.9) ion eliminates $\alpha 130$ Ala \rightarrow Glu and $\alpha 123$ Ala \rightarrow Glu as possible sites of mutation in Figure 5.3.21.6. The lack of mass change in the b₁₄²⁺ (*m/z* 744.0) precludes $\alpha 110$ Ala \rightarrow Glu and $\alpha 111$ Ala \rightarrow Glu in Figure 5.3.21.7.

The only remaining possibilities are $\alpha 115$ and $\alpha 120$, and the 57.8 Da mass increase for the y"₂₁ at m/z 2,229.9 (Figure 5.3.21.6.) confirms the mutation $\alpha 120$ Ala \rightarrow Glu, Hb J-Meerut.

. .

5.3.22. αT13 - Hb Wayne (α139–141 →139 NTVKLEPR)

Hb Wayne is the result of an α -chain mutation in which the α 139–141 amino acid residues are changed from -Lys-Tyr-Arg to -Asn-Thr-Val-Lys-Leu-Glu-Pro-Arg. This occurs in the α 2 gene through the deletion of a single codon giving rise to a frameshift.

The inclusion of a Lys residue results in an additional tryptic cleavage product, as shown in Figure 5.3.22.1. (α 143-146).

															α T(12-13	6) Pej	ptide (Wayı	ne)															
α	100	101	102	103	104 1	05 106	107	108 10	9 110	111	112 1	3 11	4 115	116	117	118	119 1	20 121	122	123 12	24 12	5 126	127 12	8 129	130	131 1	32 1	33 13	4 135	136	137 1	138 1	139 14	0 14	1 142
	L	L	S	Н	C	LL	V	ΤΙ	. Α	А	H I	J P	Α	Е	F	Т	P /	A V	Н	A S	S L	D	ΚI	L	А	S '	/ :	SТ	V	L	Т	S	N 1	V	K
	Wa	yne	9											α	T(1	2-13	8) P	eptic	le												0	1 T1	14 P	ept	ide
1	Wa c	yne x	e 	119	12) 121	122	2 123	124	125	5 12	5 12	7 12	α 28	T(1 129	2-13 130	8) P 131	e ptic 132	le 133	134	13:	5 13	5 137	138	8 13	9 1	40	141	142	2	0 14	a T1 43 1	4 P	ept 145	ide 146
	Waj C	yne x	e 	119 P) 12 A) 121 V	122 H	2 123 A	124 S	125 L	5 12 D	5 12 K	7 1: []	α 28 F	T(1 129 L	2-13 130 A	8) P 131 S	eptic 132 V	le 133 S	134 T	13: V	5 13 L	5 137 T	138 S	8 13 N	19 1. V	40 Г	141 V	142 K	2	0 14 I	α T1 43 1 [_	1 4 P 144 E	ept 145 P	ide 146 R

Figure 5.3.22.1. Sequences of the Hb Wayne $\alpha T(12-13)$ tryptic peptide, and the $\alpha T(12-13)$ and $\alpha T14$ peptides.

A blood sample was submitted for analysis by mass spectrometry because the Tosoh HPLC trace (Figure 5.3.22.2.) showed an abnormally high response at 1.80 min.

Figure 5.3.22.2. HPLC trace for Hb Wayne.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.3.22.3.) revealed an α -chain heterozygote in which the α -chain was 19.6% of total α -chains and the mass of the variant chain was 15,617.55 Da, 491.14 Da heavier than normal. The mass of the variant is characteristic of the mutation $\alpha(139-141) \rightarrow \alpha 139$ NTVKLEPR, Hb Wayne.

Figure 5.3.22.4. shows part the diagnostic part of the tryptic digest spectra from (a) normal Hb and (b) the variant Hb. The appearance of a variant $\alpha T(12-13)^{4+}$ peak at m/z 1,130.41 is consistent with the mutation and extension $\alpha(139-141) \rightarrow \alpha 139$ NTVKLEPR, Hb Wayne. This is further supported in Figure 5.3.22.5. and the appearance of a peak consistent with the variant $\alpha T(12-13)^{5+}$ at m/z 904.50 and Figure 5.3.22.6. with the appearance of the variant $\alpha T14^+$ at m/z 514.30.

Figure 5.3.22.7. shows the product ion spectrum from the variant $\alpha T(12-13)^{4+}$ precursor ion. The data are consistent with the $\alpha T(12-13)$ peptide from Hb Wayne.

Figure 5.3.22.8. shows the product ion spectrum from the variant $\alpha T14^+$ precursor ion. The data are consistent with the $\alpha T14$ peptide from Hb Wayne.

5.4. β-chain mutation examples

This section contains examples of the determination of amino acid mutations in the β -chain and have been selected to illustrate certain characteristics that can be investigated using the approaches described in this book. The entries denoted (Novel) were novel when first analysed by mass spectrometry, the name indicates the current recorded name in the literature.

Section	Tryptic Peptide	Mutation	Name
5.4.1.	βT1	β1Val→NAc-Ala	Raleigh
5.4.2.	βT1	β 1Val \rightarrow Met, Initiator Met retained	South Florida
5.4.3.	βT1	β 2His \rightarrow Pro, Initiator Met retained	Marseille
5.4.4.	βΤ1	β5Pro→Ser	Tyne
5.4.5.	βΤ1	β6Glu→Lys	С
5.4.6.	βΤ1	β6Glu→Val/β58Pro→Arg	C-Ziguinchor, S/Dhofar in same chain
5.4.7.	βΤ2	β9Ser→Cys	Pôrto Alegre
5.4.8.	βΤ2	β16Gly→Asp	J-Baltimore
5.4.9.	βT3	β19Asn→Lys	D-Ouled Rabah
5.4.10.	βT3	β22Glu→Gln	D-Iran
5.4.11.	βT3	β26Glu→Lys	Е
5.4.12.	βΤ4	β36Pro→Ser	North Chicago
5.4.13.	βΤ5	β42Phe→Ser	Hammersmith
5.4.14.	βΤ5	β52Asp→Asn	Osu Christiansborg
5.4.15.	βΤ5	β58Pro→His	Sheffield (Novel)
5.4.16.	βΤ6	β61Lys→Thr	Novel
5.4.17.	βT7	β64Gly→Asp	J-Calabria
5.4.18.	βT9	β82Lys→Arg	Taradale (Novel)
5.4.19.	βT10	β87Thr→Pro	Valletta
5.4.20.	βT11	β98Val→Met	Köln
5.4.21.	βT11	β104Arg→Lys	Alzette
5.4.22.	βT12	β106Leu→Pro	Southampton
5.4.23.	βT12	β109Val→Leu	Johnstown
5.4.24.	βT13	β121Glu→Gln	D-Los Angeles D-Punjab
5.4.25.	βT13	β121Glu→Lys	O-Arab
5.4.26.	βT13	β24Pro→Gln	Ty Gard
5.4.27.	βT14	β135Ala→Val	Alperton (Novel)

Table 5.4.1. List of the mutation illustrations for β -chain.

5.4.1. βT1 - Hb Raleigh (β1Val→NAc-Ala)

Hb Raleigh is the result of a β -chain mutation in which the $\beta 1$ amino acid residue is changed from Val to Ala through a single base change in the codon GTG \rightarrow GCG, followed by acetylation of the N-terminal Ala.

Figure 5.4.1.1. Sequence of the Hb Raleigh β T1 tryptic peptide.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.4.1.2.) showed an abnormally high P2 response (46.3%) at 1.30 min, indicating a negative charge change.

Figure 5.4.1.2. ce-HPLC trace for Hb Raleigh

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.1.3.) revealed a β -chain heterozygote in which the variant β -chain was 53.8% of total β -chains and the mass of the variant chain was 15,881.15, 13.83 Da heavier than normal. A single codon change giving a mass increase of +14 Da could be Asn \rightarrow Lys (positive), Asp \rightarrow Glu (positive), Gly \rightarrow Ala (neutral), Ser \rightarrow Thr (neutral), Val \rightarrow Ile (neutral), or Val \rightarrow Leu (neutral). The shift in the ce-HPLC trace indicates a strongly negative charge change, and indicates that none of the single base change codon mutations would be likely. Mutation Val \rightarrow Ala is possible through a single base change in the codon (Δ m -28 Da) followed by acetylation (Δ m +42 Da), giving an overall mass increase of +14 Da. Figure 5.4.1.4. shows the diagnostic part of the tryptic digest spectra from (a) normal Hb and (b) the variant heterozygote. The appearance of a variant $\beta T1^+$ peak at m/z 966.48, 13.97 Da heavier than the normal $\beta T1^+$ peak, indicates that the mutation has occurred in the $\beta T1$ tryptic peptide.

Figure 5.4.1.5. shows product ion spectra from (a) normal $\beta T1^+$ precursor ion and (b) the variant $\beta T1^+$ precursor ion. The variant b₂ fragment at m/z 966.49 is 13.9 Da heavier than the normal b₂ ion, indicating that the mutation must occur in the first two amino acid residues. All the y" ions up to and including y"₇ are present at the same mass in both the normal and variant product ion spectra, which places the mutation at the N-terminus, and is consistent with the proposed mutation $\beta 1$ Val \rightarrow Ac-Ala, Hb Raleigh.

5.4.2. βT1 - Hb South Florida (β1Val→Met initiator Met retained)

Hb South Florida is the result of a β -chain mutation in which the $\beta 1$ amino acid residue is changed from Val to Met through a single base change in the codon GTG \rightarrow ATG, and the initiator Met is retained.

βT1 Peptide												
β	-1	1	2	3	4	5	6	7	8			
		V	Η	L	Т	P	Е	Е	Κ			
		\downarrow										
	Μ	Μ	Η	L	Т	Р	E	E	K			

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.4.2.2.) showed an abnormally high unknown response (10.5%) at 0.636 min, indicating a negative charge change.

Figure 5.4.2.2. ce-HPLC trace for Hb South Florida

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.2.3.) revealed a β -chain heterozygote in which the variant β -chain had a mass of 16,030.36 Da, 163.08 Da heavier than normal. The variant peak is unresolved from the normal glycated Hb at 16,029.38 Da. Peaks are also observed at 15,889.15 Da (loss of Met from the variant) and 16,072.48 Da (N-acetylation of the variant). This spectrum is characteristic of the variant Hb South Florida, β 1Val \rightarrow Met, plus the retention of the initiator Met. Figure 5.4.2.4. shows the diagnostic part of the spectra from (a) normal Hb and (b) the variant heterozygote. The appearance of the β T1⁺ tryptic fragment at m/z 1,115.50 in the variant spectrum (+162.99 Da) indicates that the mutation has taken place near the N-terminus of the chain. The product ion spectra (Figure 5.4.2.5.) shows peaks in the variant spectrum (b₃ (m/z 400.2), b₄ (m/z 513.2) and b₅ (m/z 614.4) that are consistent with the expected peaks from Hb South Florida.

Figure 5.4.2.6. shows the variant $\beta T1^{2+}$ (*m*/*z* 558.2) product ion spectrum that is consistent with the amino acid sequence of the variant $\beta T1$ tryptic peptide of Hb South Florida.

5.4.3. βT1 - Hb Marseille (β2His→Pro initiator Met retained)

Hb Marseille is the result of a β -chain mutation in which the β 2 amino acid residue is changed from His to Pro through a single base change in the codon CAT \rightarrow CCT, and the initiator Met is retained.

βT1 Peptide											
β	-1	1	2	3	4	5	6	7	8		
		V	Η	L	Т	P	E	E	Κ		
			\downarrow								
	Μ	V	Р	L	Т	Р	E	E	K		

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.4.5.2.) showed an abnormally high P2 response (49.9%). The high P2 (mainly due to the variant) implies the variant causes a significant negative polarity change.

Figure 5.4.3.2. ce-HPLC trace for Hb Marseille.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.3.3.) revealed a β -chain heterozygote in which the variant β -chain was 56.9% of total β -chains, and the mass of the variant chain was 15,958.39 Da, 91.14 Da heavier than normal. No single amino acid mutation can give rise to a mass increase of 91 Da.

Figure 5.4.3.4. shows a diagnostic part of the tryptic digest spectra from (a) normal Hb and (b) the variant Hb. The appearance of a signal at m/z 522.30 in the lower panel shows an increase in mass for the β T1²⁺ tryptic fragment of 90.98 Da, indicating that the mutation has taken place in the first tryptic fragment. This is further supported by the appearance of a peak in the lower panel of Figure 5.4.3.5. at m/z 1,043.56,

at 91.06 Da heavier than the normal β T1⁺ tryptic fragment. As the mutation occurs in the β T1 tryptic peptide, there is suspicion that the initiator Met (131 Da) may have been retained thus a mass balance of 40 Da would suggest a His \rightarrow Pro mutation from a single base change in the codon. There is only one His residue in the β T1 tryptic peptide.

This information, coupled to that from the ce-HPLC trace, identifies the mutation as β 2His \rightarrow Pro (-40 Da), with the retention of the initiator Met (+131 Da), Hb Marseille. MS/MS of the β T1 tryptic peptide was not required for a positive identification.

5.4.4. βT1 - Hb Tyne (β5Pro→Ser)

Hb Tyne is the result of a β -chain mutation in which the β 5 amino acid residue is changed from Pro to Ser through a single base change in the codon CCT \rightarrow TCT.

Figure 5.4.4.1. Sequence of the Hb Tyne βT1 tryptic peptide.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.4.4.2.) showed an abnormal response (42.0%) at 2.68 min, slightly later than A_0 , indicating, most likely, no charge change.

Figure 5.4.4.2. ce-HPLC trace for Hb Tyne

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.4.3.) revealed a β -chain heterozygote in which the variant β -chain was approximately equal intensity to the normal β -chain, and the mass of the variant chain was 15,857.21 Da, 10.08 Da lighter than normal. A single codon change giving a mass decrease of 10 Da is Pro-Ser (7 possibilities).

Figure 5.4.4.4. shows the diagnostic part of the tryptic digest spectra from (a) normal Hb and (b) the variant heterozygote. The appearance of a signal at m/z 471.77 in the lower panel indicates that the mutation occurs in the β T1 peptide. Based on the mass difference of the whole chain, there is only one

mutation that could give rise to a mass difference of -10 Da from a single base codon change, $\beta 4$ Pro \rightarrow Ser. This is further supported by the data in Figure 5.4.4.5. showing the appearance of a variant $\beta T1^+$ ion at m/z 942.48.

Figure 5.4.4.6. shows the product ion spectra from the $\beta T1^{2+}$ precursor for (a) normal Hb and (b) the variant Hb. The occurrence of all the y" ions up to and including y"₃ at the same mass in both the normal and variant precursor ion spectra, and the mass shift for the y"₄ at *m/z* 492.4 by -10.0 Da in the lower panel, confirms the mutation as $\beta 4$ Pro \rightarrow Ser, Hb Tyne.

5.4.5. βT1 - Hb C (β6Glu→Lys)

Hb C is the result of a β -chain mutation in which the $\beta 6$ amino acid residue is changed from Glu to Lys through a single base change in the codon GAG \rightarrow AAG.

The mutation to the Lys residue results in an additional tryptic cleavage product, as shown in Figure 5.4.5.1.

β 1 2 3 4 5 6 7 8

VHLTPEEK

↓ VHLTPK EK

EXAMPLE 1

A blood sample was submitted for analysis by mass spectrometry, with the ce-HPLC trace (Figure 5.4.5.2) showing the presence of a peak at 5.10 minutes in the C-window that is of approximately equal intensity to the A_0 signal. There is also a significant presence of Hb F at 1.17 minutes (72.4%).

Peak Name	Calibrated Area %	Area %	Retention Time (min)	Peak Area			
Unknown		2.1	0.12	68604			
Unknown		3.0	0.19	98887			
Unknown		12.9	0.37	427488			
P1		1.4	0.77	44800			
F	72.4		1.17	2151744			
AO		7.7	2.51	254105			
C-window		7.9	5.10	261092			

Figure 5.4.5.2. ce-HPLC trace for Hb C in a newborn specimen.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.5.4.) revealed a signal at 15,866.84 Da, which suggests a $\beta^{A}/(\beta^{A}-1)$ heterozygote. The γ -chain doublet at 15,995.33 Da / 16,009.11 Da indicates that this sample is from an infant.

Figures 5.4.5.5. and 5.4.5.6. show comparisons of the tryptic digest of (a) normal Hb and (b) the submitted sample in the diagnostic regions. New signals are observed in the lower panels corresponding to the appearance of the β T1a⁺ (m/z 694.44 in Figure 5.4.5.5.) and β T1a²⁺ (m/z 347.72 in Figure 5.4.5.6.).

The formation of a pair of new tryptic T1 peptides suggests that the mutation involves the inclusion of a tryptic-cleavable residue (K or R). The mass of the β T1a peptide confirms β 6Glu \rightarrow Lys, Hb C.

EXAMPLE 2

A sample was received for analysis in which the ce-HPLC trace (Figure 5.4.5.3) is dominated by the peak at 5.91 minutes, assigned as Hb C (91.1%). The shift in retention time indicates a positive charge change in the mutation.

	Peak Name		Calibrated Area %	Ar ea %	Retention Time (min)	Peak Area									
	F		1.0		1.06	14747									
	P2			0.1	1.39	1022									
	P3			0.1	1.82	1972									
	A0			0.6	2.65	10410									
	A2		3. 2		3.66	56398									
L	S-window			3.1	4.55	51775									
	Unknown			0.7	4.93	11454									
	C-window			91.1	5. 12	1519476									
æ	37.5 30.0 22.5 15.0 7.5 0.0	-F - 1.06		2		2									
		-	Time (min.)												

Figure 5.4.5.3. ce-HPLC trace for Hb C in a newborn specimen.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.5.7.) shows the presence of a single signal at 15,866.33 Da, which suggests either a $(\beta^{A}-1)/(\beta^{A}-1)$ homozygote or $(\beta^{A}-1)/\beta$ -thalassaemia.

Figure 5.4.5.8. shows a comparison of the tryptic digest of (a) normal Hb and (b) the submitted sample in the diagnostic region. New signals are observed in the lower trace corresponding to the appearance of the β T1b⁺ (m/z 276.16) and β T1a²⁺ (m/z 347.72).

Figure 5.4.5.9. highlights the presence of the newly formed β T1a⁺ (*m*/*z* 694.43) and the absence of the normal β T1²⁺ (*m*/*z* 476.76). The absence of the normal β T1⁺ is also indicated in Figure 5.4.5.10. These data support the hypothesis that the specimen is homozygous for the mutation β 6Glu \rightarrow Lys, Hb C.

5.4.6. β T1 - Hb Ziguinchor (β 6Glu \rightarrow Val and β 58Pro \rightarrow Arg)

Hb Ziguinchor is the result of a double mutation in the β -chain in which the β 6 amino acid residue is changed from Glu to Val through a single base change in codon 6 CAG \rightarrow CTG (Hb Sickle), and the β 58 amino acid residue is changed from Pro to Arg through a single base change in codon 58 CCT \rightarrow CGT (Hb Dhofar).

The mutation to the Arg residue results in an additional tryptic cleavage product, as shown in Figure 5.4.6.1.

βT1 Peptide	βT5 Peptide												
β 1 2 3 4 5 6 7 8	β 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59												
VHLTPEEK	F F E S F G D L S T P D A V M G N P K												
\checkmark	βT5a Peptide												
Ý	FFESFGDLSTPDAVMGNR	Κ											

Figure 5.4.6.1. Sequences of the Hb Ziguinchor β T1 and β T5 tryptic peptides.

There is no ce-HPLC trace available for Hb Ziguinchor.

A blood sample was received for analysis that showed Hb C-like characteristics on HPLC. ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.6.2.) revealed a β -chain heterozygote in which the variant β -chain was 38.9% of total β -chains, and the mass of the variant chain was 15,896.22 Da, 28.93 Da heavier than normal. There is no single base change in the codon that can give rise to such a mass increase, implying that the sample contains a double mutation, or a mutation/modification, in a single beta chain.

Figure 5.4.6.3. shows one of the diagnostic regions of the tryptic digest spectrum of (a) normal Hb and (b) the variant Hb. A signal is observed at m/z 461.81 and is doubly charged, corresponding to the $\beta T1^{2+}$ tryptic peptide showing a decrease in mass of 30 Da from normal. This is confirmed in Figure 5.4.6.4. with the appearance of a signal at m/z 922.52, corresponding to the singly charged mutant $\beta T1$ peptide.

Figure 5.4.6.5. shows a region of the tryptic digest mass spectrum in which a new doubly charged signal is observed at m/z 995.46. The mass difference of -59 Da observed is consistent with the Hb Dhofar mutation, β 58Pro \rightarrow Arg. The β 58Arg will give rise to an additional tryptic peptide.

Figure 5.4.6.6. shows the partial product ion spectrum of the $\beta T1^{2+}$ tryptic fragment of the specimen, in which the y"₃ ion (*m*/*z* 375.3) and the internal TPV fragment (*m*/*z* 298.3) confirm the mutation $\beta 6Glu \rightarrow Val$, Hb S.

Figure 5.4.6.7. shows the product ion spectrum of the $\beta T5a^{2+}$ tryptic fragment, and the observed fragments from the m/z 995.6 precursor are consistent with the mutation $\beta 58$ Pro \rightarrow Arg.

This combination of the two mutations in a single β -chain - β 6Glu \rightarrow Val (Hb S) and β 58Pro \rightarrow Arg (Hb Dhofar) - is recorded in the literature as Hb Ziguinchor.

5.4.7. βT2 - Hb Porto Alegre (β9Ser→Cys)

Hb Porto Alegre is the result of a β -chain mutation in which the β 9 amino acid residue is changed from Ser to Cys through a single base change in the codon TCT \rightarrow TGT.

βT2 Peptide

Figure 5.4.7.1. Sequence of the Hb Porto Alegre βT2 tryptic peptide.

There is no ce-HPLC trace available for Hb Porto Alegre. The sample was received as a dried blood spot with reports of sickle and a fast band on electrophoresis and IEF.

This is an example of a specimen containing two β -chain mutations, in separate chains.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.7.2.) revealed the presence of signals at 15,837.41 Da and 15,883.33 Da, indicating the possibility of a mutation in each of the β -coding genes. The (β^{A} +16) Da signal would be expected to be of similar intensity to the other chain, and the intensity of the mutation is increased after reduction with DTT (lower panel). Figure 5.4.7.3. shows the presence of a dimer at 31,764.51 Da, that disappears after reduction with DTT, and suggests the presence of Cys residue in the (β^{A} +16) Da species.

Figure 5.4.7.4. shows a comparison of a diagnostic region of the tryptic digest spectra of the baby, father and mother, showing that the mutation giving rise to the mass decrease of 30 Da in the β T1 tryptic fragment is also carried by the father, and indicates a mutation at either β 6Glu \rightarrow Val (Hb S) or β 7Glu \rightarrow Val (Hb Haaglanden).

Figure 5.4.7.5. shows the product ion spectra of the $\beta T1^{2+}$ tryptic fragment of (a) normal and (b) variant #1 in which this mutation is identified by the mass difference in the y"₃ fragment (*m/z* 298.3 in the lower panel) as $\beta 6Glu \rightarrow Val$, Hb S.

Figure 5.4.7.6. shows a comparison of the deconvoluted mass spectra for the mother's specimen (a) after the sample had been in solution for 15hr at 25°C and (b) after reduction with DTT. This samples shows similar characteristics to the baby specimen discussed in Figure 5.4.7.2., with the increased signal from the variant following DTT reduction. Figure 5.4.7.7. shows the presence of a dimer at 31,764.51 Da, that disappears after reduction with DTT. This suggests the presence of Cys residue in the (β^A +16) Da species. The carbonic anhydrase is a contaminant.

Figure 5.4.7.8. shows a comparison of the tryptic digest mass spectra from (a) baby, (b) father, (c) mother and (d) mother after reduction with DTT. The normal $\beta T2^{2+}$ tryptic peptide at m/z 466.78 is apparent in each specimen, with the proposed variant at m/z 474.77 in the baby's and mother's specimens, but absent in the specimen from the father. The single point mutation from a single base change in the codon giving rise to a +16 Da mass change could occur at $\beta 9Ser \rightarrow Cys$ (Hb Porto Alegre), $\beta 10Ala \rightarrow Ser$ (not previously reported), $\beta 11Val \rightarrow Asp$ (Hb Windsor) or $\beta 13Ala \rightarrow Ser$ (not previously reported). This is further supported by the singly charged $\beta T2^+$ tryptic peptides shown for the same specimens in Figure 5.4.7.9.

Figure 5.4.7.10 shows a comparison of the product ion spectra from the $\beta T2^{2+}$ precursor for (a) normal Hb and (b) the submitted sample. The 16 Da increase in the mass for the b₂ fragment (*m*/*z* 175.0), and no mass change in y"₇ (*m*/*z* 675.3) and y"₈ (*m*/*z* 774.4) confirms the mutation as β 9Ser→Cys, Hb Porto Alegre.

5.4.8. βT2 - Hb Belfast (β15Trp→Arg)

Hb Belfast is the result of a β -chain mutation in which the β 15 amino acid residue is changed from Trp to Arg through a single base change in the codon TGG \rightarrow AGG or CGG.

The mutation to the Arg residue results in an additional tryptic cleavage product, as shown in Figure 5.4.8.1.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.4.8.2.) showed a response (31.9%) in the S-window and indicates a positive charge change.

Figure 5.4.8.2. ce-HPLC trace for Hb Belfast.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.8.3.) revealed a β -chain heterozygote in which the variant β -chain was approximately 50% the intensity of the normal β -chain, and the mass of the variant chain was 15,837.08 Da, 30.03 Da lighter than normal. A single codon change giving a mass decrease of 30 Da coupled with the appearance in the HPLC S-window suggests either Trp \rightarrow Arg (2 possibilities) or Glu \rightarrow Val (4 possibilities). Figure 5.4.8.4. shows the diagnostic part of the spectrum for the tryptic digest of (a) normal Hb and (b) the variant Hb which shows the appearance of a new peak at m/z 717.44, which is consistent with a new tryptic peptide, β T2a⁺, derived from the β T2 fragment in which the Trp residue is changed to Arg, identifying the mutation as β 15Trp \rightarrow Arg, Hb Belfast. This is further supported by data in Figure 5.4.8.5. with the appearance of a new signal at m/z 359.22, β T2a²⁺ in the lower panel.

Figure 5.4.8.6. shows the product ion spectrum of the $\beta T2a^{2+}$ tryptic fragment, which is consistent with the mutation $\beta 15Trp \rightarrow Arg$, Hb Belfast.

5.4.9. βT2 - Hb J-Baltimore (β16Gly→Asp)

Hb J-Baltimore is the result of a β -chain mutation in which the β 16 amino acid residue is changed from Gly to Asp through a single base change in the codon GGC \rightarrow GAC.

The mutation to Asp next to a tryptic digestion Lys inhibits the cleavage of β T2 and β T3 fragments, and results in a combined β T(2-3) peptide.

βT2 Peptide										βT3 Peptide													
β	9	10	11	12	13	14	15	16	17		18	19	20	21	22	23	24	25	26	27	28	29	30
	S	А	V	Т	А	L	W	G	K		V	N	V	D	Е	V	G	G	E	А	L	G	R
$\downarrow \beta T(2-3)$ Peptide																							
β	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
	S	А	V	Т	А	L	W	D	K	V	N	V	D	Е	V	G	G	E	А	L	G	R	

Figure 5.4.9.1. Sequence of the Hb J-Baltimore $\beta T(2-3)$ tryptic peptide.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.4.9.2.) showed an abnormal response (45.4%) in the P3 window at 1.87 min, indicating a negative charge change.

Figure 5.4.9.2. ce-HPLC trace for Hb J-Baltimore.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.9.3.) revealed a β -chain heterozygote in which the variant β -chain was approximately equal intensity to the normal β -chain, and the mass of the variant chain was 15,925.24 Da, 57.97 Da heavier than normal. A single base change in the codon giving a mass increase of 58 Da could be Ala \rightarrow Glu (15 possibilities) or Gly \rightarrow Asp (13 possibilities), and these mutations are supported by the charge change in the ce-HPLC.
Figure 5.4.9.4. shows the diagnostic part of the tryptic digest spectrum for (a) normal Hb and (b) the variant Hb. A peak at m/z 1,143.63 is apparent in the lower panel and not observed in the normal spectrum, and is consistent with the formation of the combined $\beta T (2-3)^{2+}$ tryptic fragment. This occurs as the proposed mutation $\beta 16$ Gly \rightarrow Asp inhibits the tryptic cleave at $\beta 17$ Lys.

Further evidence of the missed cleavage is shown in Figure 5.4.9.5. lower panel with the appearance of the peak at m/z 762.73, which is consistent with the $\beta T(2-3)^{3+}$ peptide, and further supports the hypothesis that the specimen was heterozygous $\beta 16$ Gly \rightarrow Asp, Hb J-Baltimore.

352

. .

5.4.10. βT3 - Hb D-Ouled Rabah (β19Asn→Lys)

Hb D-Ouled Rabah is the result of a β -chain mutation in which the β 19 amino acid residue is changed from Asn to Lys through a single base change in the codon AAC \rightarrow AAA or AAG.

The mutation to the Lys residue results in an additional tryptic cleavage product, as shown in Figure 5.4.10.1.

	βT3 Peptide														
β	18	19	20	21	22	23	24	25	26	27	28	29	30		
	V	Ν	V	D	Е	V	G	G	Е	А	L	G	R		
		\downarrow	βT3b Peptide												
	V	K		V	D	Е	V	G	G	E	А	L	G	R	

Figure 5.4.10.1. Sequence of the Hb D-Ouled Rabah βT3 tryptic peptides.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.4.10.2.) showed a significant response (43.7%) in the A_2 region at 3.66 min and suggests a positive charge change.

Figure 5.4.10.2. ce-HPLC trace for Hb D-Ouled Rabah.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.10.3.) revealed a β -chain heterozygote in which the variant β -chain was approximately equal intensity to the normal β -chain, and the mass of the variant chain was 15,881.24 Da, 13.99 Da heavier than normal. A single codon change giving a mass increase of 14 Da coupled with a positive charge change is probably Asn \rightarrow Lys (6 possibilities).

Figure 5.4.10.4. shows the diagnostic part of the tryptic digest spectrum for (a) normal Hb and (b) the variant Hb. In the lower panel, a new signal is observed at m/z 664.87, attributable to a mass increase of 14 Da in the β T3²⁺ fragment. In the β T3 tryptic peptide, this suggests that the mutation occurs at

 β 19Asn \rightarrow Lys. The mutation Asn \rightarrow Lys also gives rise to the possibility of an additional tryptic cleavage product, and this is supported in Figure 5.4.10.5 by the appearance of a new signal at m/z 551.29, which is consistent with the formation of the new β T3b²⁺ tryptic fragment.

Figure 5.4.10.6. shows the product ion spectra of the $\beta T3^{2+}$ tryptic fragment for (a) normal Hb and (b) the variant Hb. The +14 Da change in mass of the b₂ and y"₁₂ fragments confirms the mutation as $\beta 19Asn \rightarrow Lys$, Hb D-Ouled Rabah.

5.4.11. βT3 - Hb D-Iran (β22Glu→Gln)

Hb Iran is the result of a β -chain mutation in which the β 22 amino acid residue is changed from Glu to Gln through a single base change in the codon GAA \rightarrow CAA.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.4.11.2.) showed a significant response (40.1%) in the A_2 region at 3.57 min, indicating a positive charge change.

Figure 5.4.11.2. ce-HPLC trace for Hb D-Iran.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.11.3.) revealed a signal at 15,866.78 Da, which suggests a $\beta^{A/}(\beta^{A}-1)$ heterozygote.

Figure 5.4.11.4 shows the diagnostic part of the tryptic digest spectrum for (a) normal Hb and (b) the variant Hb. The appearance of a $\beta T3^{2+}$ signal at m/z 657.34 in the lower trace is consistent with a mutation giving rise to a -1 Da mass change in the $\beta T3$ tryptic fragment. There are three sites in the $\beta T3$ tryptic peptide that could support this mass change from a single base change in the codon, $\beta 21Asp \rightarrow Asn$ (Hb Cocody), $\beta 22Glu \rightarrow Gln$ (Hb D-Iran) and $\beta 26Glu \rightarrow Gln$ (Hb King's Mill). This is further supported by the appearance of the $\beta T3^{3+}$ signal at m/z 1,313.68 in the lower panel of Figure 5.4.11.5. There was no evidence of the formation of an additional tryptic fragment, which precludes the Glu \rightarrow Lys mutation.

Figure 5.4.11.6. shows a comparison of the product ion mass spectra of the $\beta T3^{2+}$ ions for (a) normal Hb and (b) the variant Hb. The 1 Da mass decrease at b₅ (*m/z* 556.5) and y"₉ (*m/z* 1,100.7) confirms the mutation as $\beta 22Glu \rightarrow Gln$, Hb D-Iran.

5.4.12. βT3 - Hb E (β26Glu→Lys)

Hb E is the result of a β -chain mutation in which the β 26 amino acid residue is changed from Glu to Lys through a single base change in the codon GAG \rightarrow AAG.

The mutation to the Lys residue results in an additional tryptic cleavage product, as shown in Figure 5.4.12.1.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.4.12.2.) showed a significant response (25.4%) in the A_2 region at 3.67 min, indicating a positive charge change.

Figure 5.4.12.2. ce-HPLC trace for Hb E.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.12.3.) revealed a signal at 15,867.06 Da, which suggests a $\beta^{A}/(\beta^{A}-1)$ heterozygote with the ($\beta^{A}-1$) component being at the lower percentage as indicated in the ce-HPLC trace.

Figure 5.4.12.4 shows the diagnostic part of the tryptic digest spectrum for (a) normal Hb and (b) the variant Hb. The appearance of peaks at m/z 416.27 and m/z 458.76 indicate that new tryptic peptides have been formed, and these are attributable to a possible mutation in the β T3 peptide in which a Lys

has been inserted, therefore either β 22Glu \rightarrow Lys (Hb E-Saskatoon) or β 26Glu \rightarrow Lys (Hb E), both of which would present as a positive charge change in the ce-HPLC trace.

Figure 5.4.12.5. shows another region of the tryptic digest spectrum for (a) normal Hb and (b) the variant Hb. The additional peak observed at m/z 916.47 in the lower panel is consistent with the ¹²C isotope of the newly formed β T3a⁺ tryptic fragment.

The masses observed, and the formation of the additional tryptic peptide(s), are consistent with the mutation β 26Glu \rightarrow Lys, Hb E.

5.4.13. βT4 - Hb North Chicago (β36Pro→Ser)

Hb North Chicago is the result of a β -chain mutation in which the β 36 amino acid residue is changed from Pro to Ser through a single base change in the codon CCT \rightarrow TCT.

Figure 5.4.13.1. Sequence of the Hb North Chicago βT4 tryptic peptide.

There is no ce-HPLC trace available for Hb North Chicago.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.13.2.) revealed a signal at 15,857.20 Da, 10.01 Da lighter than a normal β -chain, and infers a mutation Pro \rightarrow Ser (7 possibilities). The normal and variant signals are approximately equal intensity.

Figure 5.4.13.3. shows the diagnostic part of the tryptic digest spectrum for (a) normal Hb and (b) the variant Hb. A new signal is observed in the lower panel at m/z 632.37 that is attributable to the mutated β T4²⁺ fragment and is consistent with the -10 Da mass change. This is further supported by the data in Figure 5.4.13.4. in the comparison of the digest spectra for (a) normal Hb and (b) the variant Hb, in which an additional signal is observed in the lower panel at m/z 1,264.71 and is consistent with the mutated β T4⁺ tryptic fragment.

Figure 5.4.13.5. shows a comparison of the product ion spectra from the β T4²⁺ precursors for (a) normal Hb and (b) the mutated β -chain. The 10 Da shift in mass of the y"₅ fragment ion at *m*/*z* 677.1 in the lower panel identifies the mutation as β 36Pro \rightarrow Ser, Hb North Chicago.

•••

5.4.14. βT5 - Hb Hammersmith (β42Phe→Ser)

Hb Hammersmith is the result of a β -chain mutation in which the β 42 amino acid residue is changed from Phe to Ser through a single base change in the codon TTT \rightarrow TCT.

A sample was received for analysis that exhibited a normal ce-HPLC trace (Figure 5.4.14.2.) with 70.8% A_0 , 17.3% F and 3.2% A_2 .

Figure 5.4.14.2. ce-HPLC trace for Hb Hammersmith.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.14.3.) revealed a signal at 15,807.12 Da, 60.29 Da lighter than, and approximately 35% intensity of, the normal β -chain. A mass difference of -60 Da implies either Tyr \rightarrow Cys (3 possibilities) or Phe \rightarrow Ser (8 possibilities) from a single base change in the codon.

Figure 5.4.14.4. shows a diagnostic part of the mass spectrum of the tryptic digest of (a) normal Hb and (b) the variant Hb. A significantly increased signal is observed at m/z 999.66 that is consistent with the mutated $\beta T5^{2+}$ fragment, with some underlying $\alpha T9^{3+}$, and this reduces the mutation possibilities to

Phe \rightarrow Ser; β 41Phe \rightarrow Ser (Hb Denver), β 42Phe \rightarrow Ser (Hb Hammersmith) or β 45Phe \rightarrow Ser (Hb Cheverly).

Figure 5.4.14.5. shows the m/z 1,050 - 1,900 region of the product ion spectrum of the variant $\beta T5^{2+}$ tryptic fragment. The digest conditions were extended to 12 hours to remove interference from the underlying $\alpha T9^{3+}$. The masses of all the y" ions are unchanged up to y"₁₇, limiting the mutation possibilities to β 41 or β 42.

Figure 5.4.14.6. shows the m/z 1,050 - 1,900 region of the product ion spectrum of the variant $\beta T5^{2+}$ tryptic fragment. The absence of b₂, b₃ and b₄ at normal masses confirms β 41Phe \rightarrow Ser (Hb Denver) or β 42Phe \rightarrow Ser (Hb Hammersmith).

Further examination of the high mass (m/z 1,380 - 2,100) portion of the β T5²⁺ product ion spectrum in Figure 5.4.14.7 shows the appearance of a mutated y"₁₈ ion at m/z 1,851.8, confirming the mutation as β 42Phe \rightarrow Ser, Hb Hammersmith.

5.4.15. βT5 - Hb Osu Christiansborg (β52Asp→Asn)

Hb Osu Christiansborg is the result of a β -chain mutation in which the β 52 amino acid residue is changed from Asp to Asn through a single base change in the codon GAT \rightarrow AAT.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.4.15.2.) showed a significant response (39.3%) in the A_2 window at 3.77 min and infers a positive charge change.

Figure 5.4.15.2. ce-HPLC trace for Hb Osu Christiansborg.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.15.3.) shows the presence of a single signal at 15,866.91 Da, which suggests a $\beta^{A}/(\beta^{A}-1)$ heterozygote, with a low (<50%) percentage of the ($\beta^{A}-1$) variant.

Figure 5.4.15.4. shows the diagnostic part of the tryptic digest mass spectrum for (a) normal Hb and (b) the variant Hb. The lower panel shows the appearance of a signal at m/z 2,019.48 adjacent to the normal β T5²⁺ peak with a mass difference of -1 Da (0.5 m/z). This indicates that the mutation is present in the β T5 tryptic peptide and could arise from β 43Glu \rightarrow Gln (Hb Hoshida), β 47Asp \rightarrow Asn (Hb G-

Copenhagen) or β 52Asp \rightarrow Asn (Hb Osu Christiansborg) to be consistent with the observed charge change.

Figure 5.4.15.5. shows the partial product ion spectra of the $\beta T5^{2+}$ tryptic fragment of (a) normal Hb and (b) the variant Hb. A mass decrease of -1Da is observed at y"₉ (*m/z* 927.6) and no mass change is seen at y"₇ (*m/z* 716.5), identifying the mutation as $\beta 52Asp \rightarrow Asn$, Hb Osu Christiansborg.

5.4.16. βT5 - Hb Sheffield (β58Pro→His)

Hb Sheffield is the result of a β -chain mutation in which the β 58 amino acid residue is changed from Pro to His through a single base change in the codon CCT \rightarrow CAT.

								βΊ	5 P	ept	ide								
β	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59
	F	F	Е	S	F	G	D	L	S	Т	Р	D	А	V	М	G	Ν	Р	Κ
											\downarrow							\downarrow	
											Η							Η	
									No	rth 1	Man	ches	ster				SI	heffi	eld

Figure 5.4.16.1. Sequence of the Hb Sheffield β T5 tryptic peptide.

There is no ce-HPLC trace available for Hb Sheffield.

A sample was received for analysis that exhibited an abnormal peak (39.9%) just after A_0 by HPLC, indicating the presence of a possible mutation with a slightly positive charge change. The abnormality was detected during routine diabetic monitoring.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.16.2.) revealed a signal at 15,907.22 Da, 39.96 Da heavier, and approximately the same intensity as, the normal β -chain. A mass difference of +40 Da is only attributable to a Pro \rightarrow His mutation through a single base change in the codon, with seven possible sites of mutation in the β -chain.

Figure 5.4.16.3. shows the diagnostic part of the tryptic digest spectra for (a) normal Hb and (b) the variant Hb. The appearance of a peak at m/z 1,050.47 in the lower panel is consistent with a mutation in the β T5 fragment with a +40 Da mass change. In the β T5 tryptic fragment, there are two possible sites of mutation: β 51Pro \rightarrow His (Hb North Manchester) or β 58Pro \rightarrow His (Hb Sheffield).

Figure 5.4.16.4 shows a comparison of part of the product ion spectra of the $\beta T5^{2+}$ tryptic fragments of (a) normal Hb and (b) the variant Hb. A mass change of +40 Da is observed for the y"₂ fragment ion (*m*/*z* 284.2 in the lower panel) that persists for the increasing y" fragments, and identifies the mutation as $\beta 58$ Pro \rightarrow His, Hb Sheffield.

This variant was novel when first analysed by mass spectrometry.

5.4.17. β T6 - Novel (β 61Lys \rightarrow Thr)

Hb Novel is the result of a β -chain mutation in which the β 61 amino acid residue is changed from Lys to Thr through a single base change in the codon AAG \rightarrow ACG.

The mutation of the Lys residue results in the loss of a tryptic cleavage product, and the formation of a combined $\beta T(6-7)$ tryptic peptide.

	β	F6	& 7	Pe	ptio	des	
β	60	61		62	63	64	65
	V	Κ		А	Η	G	K
		\downarrow					
	V	Т	А	Η	G	K	

Figure 5.4.17.1. Sequence of the Hb Novel β T(6-7) tryptic peptide.

There is no ce-HPLC trace available for Hb Novel. A sample was received for analysis in which was reported with a 38% variant showing a negative charge change, and J-like characteristics.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.17.2.) revealed a signal at 15,840.20 Da, 27.0 Da lighter than, and approximately equal intensity of, the normal β -chain. A mass difference of -27 Da from a single base change in the codon, together with a negative charge change, suggests a mutation Lys \rightarrow Thr, of which there are 11 possibilities in the β -chain. Loss of a Lys residue would also lead to the loss of a tryptic fragment and the generation of a new, heavier tryptic fragment.

Figure 5.4.17.3. shows that diagnostic part of the tryptic digest spectra for (a) normal Hb and (b) the variant Hb. A new signal is observed at m/z 306.68 in the lower panel that is consistent with the formation $\beta(6-7)^{2+}$ from a combined $\beta(6-7)$ tryptic peptide, identifying the mutation as $\beta61Lys \rightarrow$ Thr, which has not previously been reported. Further evidence of the formation of the new tryptic peptide is shown in Figure 5.4.17.4. with a comparison of the tryptic digest spectra from (a) normal Hb and (b) the variant Hb, in which the lower panel exhibits a change in the peak at m/z 612.31 which is composed of the 2^{nd} isotope of the $\alpha T6^{3+}$ and 1^{st} isotope of the $\beta T(6-7)^+$.

Figure 5.4.17.5 shows the product ion spectrum of the $\beta T(6-7)^{2+}$ tryptic fragment, and the data are consistent with the mutation $\beta 61Lys \rightarrow Thr$, Hb Novel.

This variant was novel when first analysed by mass spectrometry.

5.4.18. βT7 - Hb J-Calabria (β64Gly→Asp)

Hb J-Calabria is the result of a β -chain mutation in which the $\beta 64$ amino acid residue is changed from Gly to Asp through a single base change in the codon GGC \rightarrow GAC.

βT7 Peptide	$\beta T(7-8)$ Peptide					
β 62 63 64 65	β 62 63 64 65 66					
АНСК	АНСКК					
\downarrow	\downarrow					
D	D					
J-Calabria	J-Calabria					

Figure 5.4.18.1. Sequence of the Hb J-Calabria β T7 and β T(7-8) tryptic peptides.

The mutation to Asp inhibits the cleavage at 65Lys, with the possibility that both β T7 and β T(7-8) may be apparent in the tryptic digest spectra.

A sample was received for analysis that exhibited an unknown response in the normal ce-HPLC trace (Figure 5.4.18.2.) with 32.8% at 1.95 min, suggesting a negative charge change.

Figure 5.4.18.2. ce-HPLC trace for Hb J-Calabria.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.18.3.) revealed a signal at 15,925.18 Da, 57.92 Da lighter than, and approximately 42% intensity of, the normal β -chain. A mass difference of +58 Da implies either Ala \rightarrow Glu (21 possibilities) or Gly \rightarrow Asp (13 possibilities) from a single base change in the codon.

Figure 5.4.18.4. shows a diagnostic part of the tryptic digest spectrum of (a) normal Hb and (b) the variant Hb. The appearance of a peak at m/z 598.33 is indicative of a mutated $\beta T(7-8)^+$, and identifies the mutation as $\beta 64$ Gly \rightarrow Asp. This is further supported by the spectrum in the lower panel of Figure

5.4.18.5. with the appearance of a minor peak at m/z 470.27, β T7⁺. The low intensity of this signal is expected as the β 64Asp would inhibit the tryptic digestion at β 65Lys.

Figure 5.4.18.6. shows a comparison of the product ion spectra of the $\beta T(7-8)^+$ tryptic fragment of (a) normal Hb and (b) the variant Hb. The 58 Da mass increase in the mass of the y"₃ at *m/z* 390.4, and the same increase in the mass of the b₃ ion at *m/z* 324.2, confirms the mutation as $\beta 64$ Gly \rightarrow Asp, Hb J-Calabria.

5.4.19. βT9 - Hb Taradale (β82Lys→Arg)

Hb Taradale is the result of a β -chain mutation in which the β 82 amino acid residue is changed from Lys to Arg through a single base change in the codon AAG \rightarrow AGG.

Although a Lys residue is mutated, the replacement by Arg does not significantly affect the products observed during tryptic digestion.

						f	8 T 9	Pe	ptic	le						
β	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82
	V	L	G	А	F	S	D	G	L	А	Н	L	D	Ν	L	Κ
				\downarrow						\downarrow						\downarrow
				V						V						R
			М	arin	eo				Ha	rlequ	ıin				Ta	radale

Figure 5.4.19.1. Sequence of the Hb Taradale β T9 tryptic peptide.

A sample was received of analysis that exhibited an unknown peak in the ce-HPLC trace (Figure 5.4.19.2.) at 2.45 mins and approximately equal intensity to A0. The slight shift in retention time suggests a slight increase in positive charge.

Figure 5.4.19.2. ce-HPLC trace for Hb Taradale.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.19.3.) revealed a signal at 15,895.25 Da, 27.96 Da heavier than, and approximately equal intensity to, the normal β -chain. A mass difference of +28 Da implies either Ala \rightarrow Val (15 possibilities), Gln \rightarrow Arg (1 possibility) or Lys \rightarrow Arg (11 possibilities) from a single base change in the codon.

Figure 5.4.19.4. shows a diagnostic part of the mass spectrum of the tryptic digest of (a) normal Hb and (b) the variant Hb. A peak is observed in the lower trace at m/z 849.46 (not labelled) for the $\beta T9^{2+}$ variant ion, indicating that the mutation could have taken place at $\beta70Ala \rightarrow Val$ (Hb Marineo), $\beta76Ala \rightarrow Val$ (Hb Harlequin) or $\beta82Lys \rightarrow Arg$ (Hb Taradale). This is further supported by the peak at m/z 566.67 for the $\beta T9^{3+}$ tryptic fragment in Figure 5.4.19.5.

Figures 5.4.19.6 and 5.4.19.7. show partial product ion spectra of the $\beta T9^{2+}$ tryptic fragment of (a) normal Hb and (b) the variant Hb. The persistence of the b₁ to b₁₄ ions in the variant spectra eliminates the possibility of the mutation being $\beta 70Ala \rightarrow Val$ or $\beta 76Ala \rightarrow Val$. The 28 Da mass increase at y"₁ (*m/z* 175.1, lower panel Figure 5.4.19.6.) and all subsequent y" ions identifies the mutation as $\beta 82Lys \rightarrow Arg$, Hb Taradale.

This variant was novel when first analysed by mass spectrometry.

5.4.20. βT20 - Hb Valletta (β87Thr→Pro)

Hb Valletta is the result of a β -chain mutation in which the $\beta 87$ amino acid residue is changed from Thr to Pro through a single base change in the codon ACA \rightarrow CCA.

A sample was received for analysis that showed an essentially normal ce-HPLC trace (Figure 5.4.20.2.).

Figure 5.4.20.2. ce-HPLC trace for Hb Valletta.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.20.3.) revealed a signal at 15,865.25 Da and implies the presence of a $\beta^{A/}(\beta^{A}-4)$ heterozygote. A mass difference of -4 Da implies Thr \rightarrow Pro (7 possibilities) mutation from a single base change in the codon.

Figure 5.4.20.4. shows the diagnostic region of the tryptic digest spectrum for (a) normal Hb and (b) the variant Hb. The peak at m/z 1,263.06 in the lower panel indicates that the mutation has occurred in the combined $\beta(10-11)^{2+}$ tryptic fragment, giving the possible sites of mutation as β 84Thr \rightarrow Pro (not previously reported) or β 87Thr \rightarrow Pro (Hb Valletta). There is also supportive evidence of the appearance of the $\beta(10-11)^{3+}$ at m/z 842.45 in the lower panel of Figure 5.4.20.5.

Figure 5.4.20.6. shows the diagnostic part of the product ion spectra of (a) normal Hb and (b) the variant Hb of the $\beta(10-11)^{2+}$ tryptic fragment with the mass shift of -4Da observed in the lower panel for the y''_{18}^{2+} (*m*/z 1,075.4) and y''_{19}^{2+} (*m*/z 1,110.9) fragments. The high relative intensity of the y''_{18}^{2+} ion is consistent with the facile cleaving at the N-terminal side of the 'new' Proline and identifies the mutation as $\beta 87$ Thr \rightarrow Pro, Hb Valletta.

5.4.21. βT21 - Hb Köln (β98Val→Met)

Hb Köln is the result of a β -chain mutation in which the β amino acid residue is changed from Val to Met through a single base change in the codon GTG \rightarrow ATG.

βT(10-11) Peptide

β 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 G T F A T L S E L H C D K L H V D P E N F R \downarrow M

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.4.21.2.) showed a response (9.3%) in the C-window at 4.94 min.

Peak Name	Area %	Ar ea %	Retention Time (min)	Peak Area	
F	0.5		1.10	4327	
Unknown		0.4	1.24	3431	
P2		1.0	1.32	9803	
P3		1.6	1.67	14861	
AO		83. 8	2.55	792613	
A2	3. 5		3.63	33084	
C-window		9.3	4.94	87990	
37.5 30.0 22.5 15.0 7.5 0.0	2.55 - 2.55 - 2.55	3	- ²⁷ - ²⁷ - ²	P6. P	

Figure 5.4.21.2. ce-HPLC trace for Hb Köln.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.21.3.) revealed a signal at 15,899.25 Da, 31.90 Da heavier than a normal β -chain. This infers a mutation Val \rightarrow Met from a single base change in the codon, of which there are 13 possibilities. The variant signal is approximately 50% the intensity of the normal β -chain.

Figure 5.4.21.4. shows the diagnostic region of the tryptic digest spectrum for (a) normal Hb and (b) the variant Hb. The peak at m/z 1,281.15 (not labelled) in the lower panel indicates that the mutation has occurred in the combined $\beta(10-11)^{2+}$ tryptic fragment, giving the possible site of mutation as β 98Val \rightarrow Met (Hb Köln). There is also supportive evidence with the appearance of the $\beta(10-11)^{3+}$ ion at m/z 854.43 in the lower panel of Figure 5.4.21.5.

Figures 5.4.21.6. shows the diagnostic part of the product ion spectra of (a) normal Hb and (b) the variant Hb of the $\beta(10-11)^{3+}$ tryptic fragment with no mass change observed for the y"₅ (*m/z* 662.5) and y"₆ (*m/z* 777.4) ions, but a mass shift of +32 Da for the y"₇ (*m/z* 908.5) and higher fragments. Supporting evidence is also observed in Figure 5.4.21.7. where a 32 Da mass increase in the b₁₆ fragment (*m/z* 1,784.4) is observed. These data identify the mutation as β 98Val \rightarrow Met, Hb Köln.

5.4.22. βT21 - Hb Alzette (β104Arg→Lys)

Hb Alzette is the result of a β -chain mutation in which the β 104 amino acid residue is changed from Arg to Lys through a single base change in the codon AGG \rightarrow AAG.

The replacement of Arg by Lys will not affect the formation of tryptic digest fragments.

										βΤ	(10	-11)	Pep	otide	9							
β	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104
	G	Т	F	А	Т	L	S	Е	L	Η	С	D	Κ	L	Η	V	D	Р	Е	Ν	F	R
																\downarrow						\downarrow
																А						Κ
															Ι	Djelfa	L				A	lzette

A sample was received for analysis in which an abnormal peak was observed in the ce-HPLC trace (Figure 5.4.22.2) slightly before A_0 at 2.30min, suggesting no charge change.

Figure 5.4.22.2. ce-HPLC trace for Hb Alzette.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.22.3.) revealed a signal at 15,839.27 Da, 27.96 Da lighter than, and approximately equal intensity to, the normal β -chain. A mass difference of -28 Da implies either Val \rightarrow Ala (13 possibilities), Arg \rightarrow Gln (3 possibilities) or Arg \rightarrow Lys (3 possibilities) from a single base change in the codon.

Figure 5.4.22.4. shows the diagnostic part of the tryptic digest spectrum of (a) normal Hb and (b) the variant Hb. The presence of a peak consistent with $\beta T(10-11)^{3+}$ tryptic fragment in the lower panel eliminates the possibility of the $\beta 104$ Arg \rightarrow Gln mutation, leaving $\beta 98$ Arg \rightarrow Gln (Hb Djelfa) or

 β 104Arg \rightarrow Lys (Hb Alzette) as the possibilities. The presence of a peak appearing at m/z 1,251.19 (not labelled) as the β T(10-11)²⁺ variant in the lower panel of Figure 5.4.22.5. is also consistent with this hypothesis.

Figure 5.4.22.6. shows the partial product ion spectrum of the $\beta T(10-11)^{2+}$ for (a) normal Hb and (b) the variant Hb, The 28 Da mass decrease in the y"₁ (*m/z* 147.1) and other y" fragments identifies the mutation as $\beta 104$ Arg \rightarrow Lys, Hb Alzette.

5.4.23. βT22 - Hb Southampton (β106Leu→Pro)

Hb Southampton is the result of a β -chain mutation in which the β 106 amino acid residue is changed from Leu to Pro through a single base change in the codon CTG \rightarrow CCG.

								βΤ1	2 Pe	ptid	e							
	β	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	
		L	L	G	Ν	V	L	V	С	V	L	А	Η	Η	F	G	Κ	
		\downarrow	\downarrow				\downarrow				\downarrow							
		Р	Р				Р				Р							
Be	ellev	ne IV	7	Shawa-Yokushiji							Durham NC							
	Southampton																	

Figure 5.4.23.1. Sequence of the Hb Southampton βT12 tryptic peptide.

There is no ce-HPLC trace available for Hb Southampton. The sample was sent for investigation by mass spectrometry owing to an abnormality observed in the ${}^{A}\gamma/{}^{G}\gamma$ measurement for possible hereditary persistence of foetal haemoglobin.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.23.2.) revealed a signal at 15,850.86 Da, 16.37 Da lighter than, and approximately 20% of the intensity of, the normal β -chain. The low intensity of the variant suggests that the protein is unstable, and a mass difference of -16 Da implies either Asp \rightarrow Val (7 possibilities), Cys \rightarrow Ser (2 possibilities), Ser \rightarrow Ala (5 possibilities), Tyr \rightarrow Phe (3 possibilities) or Leu \rightarrow Pro (18 possibilities) from a single base change in the codon.

Figure 5.4.23.3. shows a partial product ion spectrum of the $(M+16H)^{16+}$ precursor of (a) normal Hb and (b) the variant Hb. The b_{47}^{4+} fragment at m/z 1,308.3 shows no mass change, and indicates that the mutation does not lie between $\beta 1$ and $\beta 47$, and no mass change in the y''_{23}^{4+} ion at m/z 811.7 indicates that the variant does not lie between $\beta 124$ and $\beta 146$. The mass difference of -16 Da in the y''_{96}^{10+} ion at m/z 1,032.7, indicates that the mutation has occurred between $\beta 51$ and $\beta 123$, inclusive.

Figure 5.4.23.4. shows the diagnostic region of the tryptic digest spectrum for (a) normal Hb and (b) the variant Hb. The appearance of a peak in the lower trace at m/z 587.79 is consistent with the mutation of the β T12³⁺ (β 105-120), with all the possible mutations in this fragment Leu \rightarrow Pro; β 105 (Hb Bellevue IV), β 106 (Hb Southampton), β 110 (Hb Shawa-Yokushiji) and β 114 (Hb Durham NC).

Figure 5.4.23.5. shows the partial product ion spectra of the $\beta T12^{3+}$ tryptic fragment for (a) normal Hb and (b) the variant Hb. For the variant, there is no mass change in any of the y" ions until the y"₁₅ fragment with a mass decrease of 16 Da observed at m/z 824.7, confirming the mutation as $\beta 106$ Leu \rightarrow Pro, Hb Southampton.

5.4.24. βT12 - Hb Johnstown (β109Val→Leu)

Hb Johnstown is the result of a β -chain mutation in which the β 109 amino acid residue is changed from Val to Leu through a single base change in the codon GTG \rightarrow CTG or TTG.

	βT12 Peptide															
β	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
	L	L	G	Ν	V	L	V	С	V	L	А	Η	Η	F	G	Κ
			\downarrow		\downarrow		\downarrow		\downarrow						\downarrow	
			А		I/L		I/L		I/L						А	
	Johnstown							Champagne				Iowa				
	NL						NL									

Figure 5.4.24.1. Sequence of the Hb Johnstown βT12 tryptic peptide.

There is no ce-HPLC trace available for Hb Johnstown. The sample was sent for analysis by mass spectrometry for a reported high oxygen affinity.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.24.2.) revealed a signal at 15,881.17 Da, 13.91 Da heavier than, and approximately similar intensity to, the normal β -chain. A mass difference of +14 Da implies either Asn \rightarrow Lys (6 possibilities), Asp \rightarrow Glu (7 possibilities), Gly \rightarrow Ala (13 possibilities), Ser \rightarrow Thr (5 possibilities), Val \rightarrow Ile (18 possibilities) or Val \rightarrow Leu (18 possibilities) from a single base change in the codon. Phenotypic results discount Asn \rightarrow Lys, leaving 61 possible sites of mutation at this stage.

Figure 5.4.24.3. shows the diagnostic part of the tryptic digest spectrum of (a) normal Hb and (b) the variant Hb comparing the β T12²⁺ tryptic fragments. An additional peak is observed in the lower panel at m/z 867.51 consistent with the mutation of +14 Da occurring in the β T12 tryptic fragment. This is further supported by the data in the lower panel of Figure 5.4.24.4. with the appearance of the mutated β T12³⁺ tryptic fragment at m/z 578.76. These data are consistent with the mutations: β 107Gly \rightarrow Ala (not previously reported), β 197Val \rightarrow Leu/Ile (Hb Johnstown), β 111Val \rightarrow Leu/Ile (not previously reported), β 113Val \rightarrow Leu (Hb Champagne) or β 119Gly \rightarrow Ala (Hb Iowa).

Figure 5.4.24.5. shows the partial product ion mass spectra of the $\beta T12^{2+}$ tryptic fragment of (a) normal Hb and (b) the variant Hb. The 14 Da mass increase of the b₅ fragment at m/z 511.3 in the lower panel confirms the mutation as either $\beta 109Val \rightarrow Leu$ (Hb Johnstown) or $\beta 109Val \rightarrow Ile$ (not previously reported). Mass spectrometry cannot distinguish between Leu and Ile. However, $\beta 109Val \rightarrow Ile$ is unlikely as two base changes in the specific codon are required for this mutation.

that can give a 14 Da mass increase from a single amino acid mutation.

5.4.25. βT13 - Hb O-Arab (β121Glu→Lys)

Hb O-Arab is the result of a β -chain mutation in which the β 121 amino acid residue is changed from Glu to Lys through a single base change in the codon GAA \rightarrow AAA.

βT13 Peptide

β	121	122	123	124	125	126	127	128	129	130	131	132			
	Е	F	Т	Р	Р	V	Q	А	А	Y	Q	Κ			
	\downarrow		βT13b Peptide												
	121		122	123	124	125	126	127	128	129	130	131	132		
	Κ		F	Т	Р	Р	V	Q	А	А	Y	Q	K		
C)-Aral)													

Figure 5.4.25.1. Sequence of the Hb O-Arab βT13 tryptic peptide.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.4.25.2.) showed a significant response (36.9%) at 4.88 min, indicating a significant positive charge change.

Figure 5.4.25.2. ce-HPLC trace for Hb O-Arab.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.25.3.) revealed a signal at 15,866.89 Da, which is consistent with a $\beta^{A/(\beta^{A}-1)}$ heterozygote. A mass difference of -1 Da with a significant positive charge change suggests that the mutation is either Glu \rightarrow Gln (8 possibilities) or Glu \rightarrow Lys (8 possibilities) from a single base change in the codon. If the mutation is Glu \rightarrow Lys, this will likely result in an additional tryptic fragment.

Figure 5.4.25.4. shows the diagnostic part of the tryptic digest spectrum of (a) normal Hb and (b) the variant Hb. Peaks are observed at m/z 689.38 in the lower panel, attributable to the proposed $\beta T(13a+b)^{2+}$ and at m/z 625.34, assigned as the new $\beta T13b^{2+}$. Figure 5.4.25.5. shows a higher mass range than that shown in Figure 5.4.25.4. with a tryptic fragment being seen at m/z 1,249.68, attributed to the $\beta T13b^+$ tryptic fragment. These data unambiguously identify the mutation as $\beta 121Glu \rightarrow Lys$, Hb O-Arab.

5.4.26. βT13 - Hb D-Punjab (D-Los Angeles) (β121Glu→Gln)

Hb D-Punjab is the result of a β -chain mutation in which the β 121 amino acid residue is changed from Glu to Gln through a single base change in the codon GAA \rightarrow CAA.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.4.26.2.) showed a significant response (33.8%) in the D-window at 4.16 min, indicating a significant positive charge change.

Figure 5.4.26.2. ce-HPLC trace for Hb D-Punjab.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.26.3.) revealed a signal at 15,866.80 Da, which is consistent with a $\beta^{A/(\beta^{A}-1)}$ heterozygote. A mass difference of -1 Da with a significant positive charge change suggests that the mutation is either Glu \rightarrow Gln (8 possibilities) or Glu \rightarrow Lys (8 possibilities) from a single base change in the codon. If the mutation is Glu \rightarrow Lys, this will likely result in an additional tryptic fragment.

Figure 5.4.26.4. shows the diagnostic part of the tryptic digest spectrum of (a) normal Hb and (b) the variant Hb. A peak is observed at m/z 689.37 in the lower panel, attributable to the proposed β T13²⁺.

The isotope patten is a combination of the normal and variant $\beta T13^{2+}$ isotope patterns overlapping. Unlike the data for Hb O-Arab (Section 5.4.25.) no new peak is observed at m/z 625.3, indicating an additional tryptic fragment has <u>not</u> been formed, and the data are therefore consistent with the mutation $\beta 121$ Glu \rightarrow Gln. Figure 5.4.26.5. shows a higher mass range than that shown in Figure 5.4.25.4. with a tryptic fragment being seen at m/z 1,377.73 attributed to the $\beta T13^+$, and no peak being observed at m/z 1,249.68. These data unambiguously identify the mutation as $\beta 121$ Glu \rightarrow Lys, Hb D-Punjab (D-Los Angeles).

5.4.27. βT13 - Hb Ty Gard (β124Pro→Gln)

Hb Ty Gard is the result of a β -chain mutation in which the β 124 amino acid residue is changed from Pro to Gln through a single base change in the codon CCA \rightarrow CAA.

βT13 Peptide

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.4.27.2.) showed a significant response (36.8%) at 2.29 min, indicating no significant charge change.

Figure 5.4.27.2. ce-HPLC trace for Hb Ty Gard.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.27.3.) revealed a signal at 15,892.29 Da, 31.02 Da heavier than, and approximately 80% of the intensity of the normal β -chain. A mass difference of +31 Da can only arise from Pro→Gln (7 possibilities) from a single base change in the codon.

Figure 5.4.27.4. shows the diagnostic part of the tryptic digest spectrum of (a) normal Hb and (b) the variant Hb comparing the β T13²⁺ tryptic fragments. An additional peak is observed in the lower panel at m/z 705.36, consistent with the mutation of +31 Da occurring in the β T13 tryptic fragment. In the

 β T13 tryptic fragment there are two potential sites of mutation: β T124Pro \rightarrow Gln (Hb Ty Gard) or β T125Pro \rightarrow Gln (not previously reported).

Figure 5.4.24.5. shows the partial product ion mass spectra of the $\beta T13^{2+}$ tryptic fragment of (a) normal Hb and (b) the variant Hb. A mass change of +31 Da is observed for the b₄ fragment at m/z 506.3 in the lower panel, as well as a similar mass change in the y"₉ fragment at m/z 1,032.8, identifying the mutation as $\beta T124Pro \rightarrow Gln$, Hb Ty Gard.

5.4.28. βT14 - Hb Alperton (β135Ala→Val)

Hb Alperton is the result of a β -chain mutation in which the β 135 amino acid residue is changed from Ala to Val through a single base change in the codon GCT \rightarrow GTT.

	βT14 Peptide													
β	133	134	135	136	137	138	139	140	141	142	143	144		
	V	V A G		V	A N		A L		Α	Η	Κ			
	\downarrow					¥		¥		¥		↓		
			V			V		V		V		R		
		Α	lperto	n	Cutle	erville	Pu	ttelan	ge V	Vaterla	and	Heze		

Figure 5.4.28.1. Sequence of the Hb Alperton βT14 tryptic peptide.

A blood sample was submitted for analysis by mass spectrometry because the ce-HPLC trace (Figure 5.4.28.2.) showed a mildly elevated response (5.6%%) in the A₂ region at 3.62 min. The sample was also reported as showing β -thalassaemia trait.

Figure 5.4.28.2. ce-HPLC trace for Hb Alperton.

ESI-MS analysis of the 500-fold diluted blood sample (Figure 5.4.28.3.) revealed a single peak at 15,895.41 Da, 28.14 Da heavier than the normal β -chain. As this was silent by ce-HPLC, no charge change is anticipated, and the likely mutations are: Ala \rightarrow Val (15 possibilities) or Lys \rightarrow Arg (11 possibilities) from a single base change in the codon.

Figure 5.4.28.4 shows the diagnostic part of the tryptic digest spectrum of (a) normal Hb and (b) the variant Hb. The appearance of a peak in the lower trace at m/z 589.36 is consistent with the +28 Da mutation occurring in the β T14²⁺ tryptic fragment ion. The lack of a signal corresponding to the normal β T14²⁺ fragment suggests this is either a homozygous mutation, or a β -thalassaemia trait. Possible sites of mutation in the β T14 tryptic fragment include: β 135Ala \rightarrow Val (Hb Alperton), β 138Ala \rightarrow Val (Hb

Cutlerville), β 140Ala \rightarrow Val (Hb Puttelange), β 142Ala \rightarrow Val (Hb Waterland) or β 144Lys \rightarrow Arg (Hb Heze).

Figure 5.4.28.5. shows the partial product ion mass spectra of the β T14²⁺ tryptic fragment of (a) normal Hb and (b) the variant Hb. No mass change is observed in the y" ion series until the +28 Da mass change in the y"₁₀²⁺ (*m*/*z* 490.4) and y"₁₀⁺ (*m*/*z* 979.6) fragments, confirming the mutation as β 135Ala \rightarrow Val, Hb Alperton.

This variant was novel when first analysed by mass spectrometry.

ì

459

SECTION 6

6.1. Variants identified by electrospray ionization mass spectrometry	
α -chain variants	
β-chain variants	
δ-chain variants	
^G γ-chain variants	
Hybrids	
Notes	

6.1. Variants identified by electrospray ionization mass spectrometry

Generally detected by ce-HPLC or IEF.

In the Tables for α -chain and β -chain shown below, the tryptic peptides are highlighted with shading. The examples shown in detail in Section 5 are also highlighted with a heavy border.

	Mutation	Name	Comments	%	ΔΜ	TMS
	α 1Val \rightarrow Leu Initiator Met retained	St.Jozef (α 2)	Mr 15,271.61	15	145	N
	α3Ser→Pro	Central Middlesex (Novel)		22	10	Ν
	α5Ala→Asp	J-Toronto		31	44	Ν
αT1	α6Asp→Asn	Dunn		~13	-1	N
	α6Asp→Tyr	Woodville		9	48	NY
	α6Asp→0	Boyle Heights		7	-115	NY
	α7Lys→Asn	Tatras		25	-14	Ν
	α9Asn→Ser	Zurich-Hottingen (Novel)		9	-27	Y
αΤ2	α 9Asn \rightarrow Thr	Broomfield (Novel)		19	-13	Ν
	α11Lys→Gln	J-Wenchang-Wuming		(27)	0	N
	α12Ala→Asp	J-Paris-I		~30	44	Y
	α13Ala→Pro	Ravenscourt Park (Novel)		10	26	Y
	α14Trp→Cys	Bladensburg		4	-83	Ν
αΤ3	α 15Gly \rightarrow Arg	Ottawa		21	99	Ν
	α 15Gly \rightarrow Asp	I-Interlaken, J-Oxford		24/30	58	NY
	α16Lys→Asn	Beijing		26	-14	Ν
	α16Lys→Glu	Ι		~28	1	Ν
	α 18Gly \rightarrow Arg	Handsworth		14	99	Ν
	α18Gly→Ser	Novel		21	30	Y
	α19Ala→Pro	Novel		23	26	Y
	α19Ala→Thr & O-Arab	Novel		30	30	Y
	α20His→Gln	LeLamentin		26.0±0.6 (n=13)	-9	N
αT4	α21Ala→Pro	Fontainebleau		16.0±1.1 (n=12)	26	Y
	$\alpha 22 Gly \rightarrow Asp$	J-Medellin		22	58	Y
	α23Glu→Gln	Memphis		~17	-1	Y
	α23Glu→Val	G-Audhali		14	-30	Y
	α26Ala→Val	Campinas		24	28	Y
	α27Glu→Ala	Hackney (Novel)		15	-58	Y
	α27Glu→Asp	Hekinan		17	-14	Y
	α27Glu→Gly	Fort Worth		4 & 9	-72	Y

	Mutation	Name	Comments	%	ΔΜ	TMS
	α27Glu→Lys	Shuangfeng		~11	-1	Ν
	α27Glu→Val	Spanish Town		12	-30	Y
T 4	α29Leu→Val	Novel		19	-14	Y
α14	α30Glu→Gln	G-Honolulu	[Distinguish	~31	-1	Y
	α30Glu→Lys	O-Padova	by ce-HPLC]		-1	Y
	α31Arg→Ser	Prato		21	-69	N
	α 32Met \rightarrow Thr	Novel		18	-30	Y
	α38Thr→Ala	Beaconsfield (Novel)		23	-30	Y
αT5	α38Thr→Ile	Chelsea (Novel)		25	12	Y
	α40Lys→Asn	Saratoga Springs	mE	17	-14	Ν
	α40Lys→Gln	Linwood	mE	(25)	0	Ν
	α41Thr→Ser	Miyano	Е	27	-14	Y
	α42Tyr→His	Barika		22	-26	Y
	α44Pro→Ala	Milne (Novel)		30	-26	Y
	α44Pro→Arg	Kawachi		25	59	NY
	α46Phe→Val	Hillingdon (Novel)		25	-48	Y
	α47Asp→Asn	Arya		~23	-1	Ν
	α47Asp→His	Hasharon		19	22	Ν
	α47Asp→Tyr	Kurdistan		21	48	Ν
	α48Leu→Arg	Montgomery		22	43	Ν
	α48Leu→Pro	Reading (Novel)		17	-16	Y
T	α49Ser→Arg	Savaria (α2)		22	69	Ν
α16	α50His→Asp	J-Sardegna		29	-22	Y
	α50His→Leu	Dublin (Novel)		26	-24	Y
	α50His→Tyr	South Yorkshire (Novel)		31	26	Y
	α51Gly→Arg	Russ		20	99	Ν
	α51Gly→Ser	Riccarton (α1)	Affects measurement of HbA _{1C} by ce-HPLC	20.7±0.6 (n=70)	30	Y
	α51Gly→Ser	Riccarton-II (a2)		26	30	Y
	$\alpha(51-58) \rightarrow 0 \text{ or}$ $\alpha(52-59) \rightarrow 0$	J-Biskra		21	-765	N
	α52Ser→Ala	Cheshire (Cheshire)		24	-16	Y
	α52Ser→Pro & S	Novel		30	10	Ν
	α54Gln→Arg	Shimonoseki		25	28	Ν
αΤ6	α54Gln→Glu	Mexico		~29	1	Y
	α54Gln→His	Novel, Princes Risborough		22	9	Ν
	α54Gln→Pro	Dhaka (Novel)		18	-31	Ν

	Mutation	Name	Comments	%	ΔM	TMS
orT6	α 55Val \rightarrow Ile or Leu	Novel or Roubaix		25	14	Y
<i>α</i> 10	α56Lys→Glu	Shaare Zedek		(25)	1	Ν
	α57Gly→Arg	L-Persian Gulf		22	99	Ν
α T 7	α57Gly→Asp	J-Norfolk		27	58	Y
0.17	α59Gly→Ser	Parma (α1)		15	30	Y
	α60Lys→Asn	Zambia		19	-14	Ν
αT7 αT7 α α α α α α α α α α α α α	α62Val→Ala	Novel		7	-28	Y
	α63Ala→Asp	J-Pontoise		19	44	Y
	α63Ala→Thr	Novel		25	30	Y
	α64Asp→Asn	G-Waimanalo	α-CT	~24	-1	Y
	α64Asp→His	Q-India		19	22	Y
	α68Asn→His	Jeddah (α1)/St. Truiden (α2)		22/43	23	Y
	α68Asn→Lys	G-Philadelphia		36	14	Ν
	α68Asn→Tyr	Chelmsford (Novel)		24	49	Y
	α70Val→Gly	Edinburgh (Novel)		7	-42	Y
	α71Ala→Glu	J-Habana		25	58	Y
	α71Ala→Thr & D-Punjab	Hatfield (Novel)		27	30	Y
	α72His→Gln	Gouda		23	-9	Y
	α74Asp→Asn	G-Pest	α-CT	~15	-1	Y
	α74Asp→Gly	Chapel Hill		20	-58	Y
αΤ9	α74Asp→His	Q-Thailand (a1)	with α -thal	32	22	Y
	α74Asp→Tyr	Uttoxeter (Novel)		17	48	Y
	α74Asp or α75Asp→0	Watts		10	-115	Y
	α75Asp→His	Q-Iran		22	22	Y
	α75Asp→Tyr	Winnipeg		15	48	Y
	α76Met→Arg	Walpole (Novel)		9	25	Ν
	α 76Met \rightarrow Thr	Aztec		19	-30	Y
	α77Pro→His	Toulon		24	40	Ν
	α78Asn→Lys	Stanleyville II		25	14	Ν
	α81Ser→Cys	Nigeria		As received 25 Reduced 35	16	Y
	α84Ser→Arg	Etobicoke		18	69	Ν
	α85Asp→Asn	G-Norfolk	α-CT	~20	-1	Y
	α85Asp→Glu	Aylesbury (Novel)		24	14	Y

	Mutation	Name	Comments	%	ΔΜ	TMS
	α85Asp→Tyr	Atago		21	48	Y
	α 85Asp \rightarrow Val	Inkster ($\alpha 2$)		28	-16	Y
	α86Leu→Val	Ridgewood (Novel)		26	-14	Y
	α87His→Tyr	M-Iwate	Cyanosis	25	26	Y
	α88Ala→Glu	Wroclaw (Novel)		22	58	Y
а Т 9	α89His→Gln	Enfield (Novel)		24	-9	Y
ury	α89His→Leu	Luton	E with α-thal	39	-24	Y
	α90Lys→Asn	J-Broussais		22	-14	Ν
	α90Lys→Gln	Bergerac		(31)	0	N
	α90Lys→Glu	Sudbury (Novel)		~22	1	Ν
	α90Lys→Thr	J-Rajappen		26	-27	Ν
	α91Leu→Phe	Vientiane		25	34	Ν
αT10	α92Arg→Gln	J-Cape Town	mE	29/38	-28	Ν
	α92Arg→Leu	Chesapeake		23	-43	Ν
	α94Asp→Asn	Titusville		?	-1	Ν
	α94Asp→Glu	Roanne		22	14	Y
	α94Asp→Gly	Capa (a1)		24	-58	Y
	α94Asp→Tyr	Setif		17	48	Ν
αT11	α95Pro→Ala	Denmark Hill		29	-26	Ν
	α95Pro→Arg	St Luke's (α1)		11	59	Ν
	α95Pro→Leu	G-Georgia		17	16	Ν
	α98Phe→Tyr & Sickle	Mill Hill (Novel)		19	16	Y
	α99Lys→Asn	Fulton (Novel)		18	-14	Ν
	α102Ser→Arg	Manitoba		11	69	Ν
	α103His→Tyr	Charolles (α 1), Lombard (α 2)		37	26	Y
	α107Val→Met	Novel		26	32	Y
	α108Thr→Asn	Bleuland		14	13	Y
	α110Ala→Val	White Rose (Novel)		16	28	Y
αT12	α112His→Asp	Hopkins-II		15	-22	Y
	α113Leu→Arg	San Antonio		26	43	Y
	α114Pro→Ala	Broomhill (Novel)		19	-26	Y
	α114Pro→Arg	Chiapas		19	59	Ν
	α115Ala→0	Towson (α2?)		27	-71	Y
	α116Glu→Gln	Oleander	α-CT	~23	-1	Ν
	α116Glu→Lys	O-Indonesia		~22	-1	Ν

	Mutation	Name	Comments	%	ΔM	TMS
	α117-118 Leu or Ile inserted	(Phnom Penh, Ile inserted (a1)		18	113	Y
	α119Pro→Leu	Diamant	α-CT	9	16	Y
	α120Ala→Glu	J-Meerut		21.7±0.7 (n=11)	58	N
	α121Val→Met	Owari		22	32	Y
αT12	α122His→Gln	Westmead		17	-9	Y
	α 123Ala \rightarrow Asp	Novel	α-CT	8	44	Y
	α 123Ala \rightarrow Thr	Santa Barnabas		19	30	Y
	α 123Ala \rightarrow Val	Pressath (Novel)		19	28	Y
	α 124Ser \rightarrow Phe	Batley (Novel)		10	60	Y
	α126Asp→Gly	West One		22	-58	N
	α130Ala→Pro	Sun Prairie	α-CT	15	26	Y
	α131Ser→Ala & LeLamentin	Novel		21	-16	Y
T12	α134Thr→Ser	Kenton (Novel)		21	-14	Y
α113	α136Leu→Met	Chicago		36	18	Y
	α139Lys→Ile	Novel		24	-15	N
	$\alpha 139-141 \rightarrow \alpha 139NTVKLEPR$	Wayne	Mr ~15,617.5	12	491	N
	α140Tyr-Arg→0	Natal	Mr 1,5807.02	24	-319	N
	α140Tyr→His	Ethiopia		23	-26	N
α114	α141Arg→His	Suresnes		29	-19	Ν
	α141Arg→0	Koelliker ^(a)			-156	Ν
	α142Stop→142Gln	Constant Spring	Mr 18,481.29 Bio-Rad 5.04 min	3	3355	Y
	α142Stop→142Glu	Seal Rock	Mr 18,482.28 Bio-Rad 4.79 min	1.2	3356	Y

β-chain variants

	Mutation	Name	Comments	%	ΔΜ	TMS
	β1Val→NAc-Ala	Raleigh		54	14	Ν
	β1Val→Gly	Watford (Novel)		42	-42	Ν
	β1Val→Met Initiator Met retained	South Florida	Mr 16,030.50	49 incl. glycated β ^A	163	N
	β2His→Arg	Deer Lodge		48	19	Ν
	β2His→Gln	Okayama		53	-9	Ν
	β2His→Gln/ β26 Glu→Lys	Novel Okayama/E in same chain		27	-10	N
	β2His→Pro, initiator Met retained	Marseille	Mr 15,958.41	55	91	Ν
	β4Thr→Pro	Benin City (Novel)		~33	-4	Ν
	β5Pro→Ala	Gorwihl (Novel)		48	-26	Ν
βΤ1	β5Pro→Ser	Tyne		43.6±2.1 SD (n=19)	-10	N
	β6Glu→Lys	С			-1	Ν
	β6Glu→Lys/ β83Gly→Asp	C-New Cross (Novel) C/Pyrgos in same chain		47	57	Ν
	β6Glu→Lys/ β98Val→Met	Kingsbury (Novel) C/Köln in same chain	SHA Mr 15,898.36	As received 8.7 Reduced 11	31	Y
	β6Glu→Val	Sickle			-30	Y
	β6Glu→Val/ β58Pro→Arg	C-Ziguinchor, S/Dhofar in same chain	Mr 15,896.33	39	29	Y
	β7Glu→Gly	G-San José		40	-72	Y
	β7Glu→Lys	G-Siriraj		~35	-1	NY
	β9Ser→Cys	Pôrto Alegre	Dimerises	Reduced 40	16	Y
	$\beta 10Ala \rightarrow Thr$	Belleville (Novel)		46	30	Y
	β10Ala→Val	Iraq-Halabja		47	28	Y
βΤ2	β13Ala→Val	Novel		52	28	Y
	β14Leu→Arg	Sogn		30	43	Ν
	β15Trp→Arg	Belfast	HzB	30	-30	Ν
	β15Trp→Cys	Garston (Novel)		27	-83	Ν
	β 16Gly \rightarrow Arg	D-Bushman		48	99	Ν

	Mutation	Name	Comments	%	ΔΜ	TMS
BT 2	β16Gly→Asp	J-Baltimore	Diagnostic βT2- 3 ²⁺ ion at <i>m/z</i> 1,143.59	50.7±0.8, incl δ (n=18)	58	N
p12	β17Lys→Gln & G-Philadelphia	Nikosia	Diagnostic β T2- 3 ²⁺ ion at <i>m/z</i> 1,114.59		0	N
	β18Val→Gly	Sinai-Baltimore		40	-42	Y
	β19Asn→Asp	Alamo		(49)	1	Y
	β19Asn→Lys	D-Ouled Rabah		45	14	Y
	β20Val→Met	Olympia	ME	50	32	Y
	β21Asp→Val	Rocky Mountain (Novel)		38	-16	Ν
	β22Glu→Ala	G-Coushatta		46	-58	Y
	β22Glu→Gln	D-Iran		~45	-1	Y
βΤ3	β22Glu→Gly	G-Taipei		43	-72	Y
,	β22Glu→Lys	E-Saskatoon	ce-HPLC re D- Iran	(46)	-1	Y
	β24Gly→Asp	Moscva		38	58	Y
	β26Glu→Asp	Marijampolė (Novel)		46	-14	Y
	β26Glu→Gln	King's Mill (Novel)		~51	-1	Y
	β26Glu→Lys	Е	Target cells	~25	-1	Ν
	β27Ala→Val	Grange-Blanche	mE	50	28	Ν
	β30Arg→Ser	Tacoma	HzB	43	-69	Ν
	$(\beta 31 Leu \rightarrow Pro, not identified by MS$	Yokohama	HzB, SHA	~7	-16	
	β36Pro→Ser	North Chicago	E	44	-10	Ν
βΤ4	β38Thr→Asn	Hinwil	mE	43	13	N
	β39Gln→Lys	Alabama		(40)	0	Ν
	β40Arg→Lys	Athens-GA		49	-28	Ν
	β42Phe→Cys	Little Venice (Novel)	de novo HzB, SHA	As received 19 Reduced 21	-44	Y
	β42Phe→Leu/(Ile)	Louisville	mHA, HzB, α- CT	34	-34	Y
βΤ5	β42Phe→Ser	Hammersmith	de novo, HzB, SHA	24	-60	Y
	β43Glu→Gly	Haringey (Novel)		47	-72	Ν
	β43Glu→Lys	Hornchurch (Novel)		~40	-1	Ν
	β45Phe→Ser	Cheverly	HzB	42	-60	Y
	β46Gly→Arg	Gainesville-GA		37	99	Ν
	β46Gly→Glu	K-Ibadan		40	72	Ν

	Mutation	Name	Comments	%	ΔΜ	TMS
	β47Asp→Tyr	Maputo		44	48	Y
	β47Asp→Val	Muravera		38	-16	Y
	β51Pro→Arg	Willamette	Target cells	35	59	Ν
	β51Pro→His	North Manchester (Novel)		50	40	Y
	β52Asp→Ala	Ocho Rios		46	-44	Y
	β52Asp→Asn	Osu Christiansborg		40	-1	Y
	β52Asp→Gly & D-Punjab	Hokusetsu			-58	Y
	β52Asp→His	Summer Hill		44	22	Y
	β54Val→Ile & S & Stanleyville II	Askew (Novel)			14	Y
βΤ5	β56Gly→Arg	Hamadan		51	99	Ν
	β56Gly→Asp	J-Bangkok		51	58	Ν
	β56Gly→Cys	Leeds (Novel)		42	46	N
	β57Asn→His & Stanleyville II	Sidcup (Novel)		40	23	N
	β57Asn→Lys	G-Ferrara		34	14	Y
	β58Pro→Arg	Dhofar		20 & 40	59	Ν
	β58Pro→His	Sheffield (Novel)		46	40	Y
	β59Lys→Asn	J-Lome		50	-14	Ν
	β59Lys→Gln	Hillsborough (Novel)		(48)	0	Ν
	β59Lys→Glu	I-High Wycombe		~43	1	Ν
	β 59Lys \rightarrow Thr	J-Kaohsiung		47	-27	Ν
βΤ6	$\beta 61Lys \rightarrow Thr$	Novel		45	-27	N
βΤ7	β64Gly→Asp	J-Calabria		42	58	NY
	β69Gly→Asp	Rambam, J-Cambridge		51	58	Y
	β69Gly→Ser & Hasharon	City of Hope		51	30	Y
	β70Ala→Asp	Seattle	HzB, mHA	25	44	Y
	β71Phe→Ser	Christchurch	HzB, HA	30	-60	Ν
	β73Asp→Asn	G-Accra, Korle-Bu		50	-1	Y
070	β74Gly→Val	Bushwick	НА	35	42	Y
p19	β77His→Asp	J-Iran		50	-22	N
	β77His→Tyr	Fukujama		48	26	NY
	β79Asp→Asn	Yaizu		~40	-1	Y
	β79Asp→His	Tigraye		43	22	Y
	β80Asn→Tyr	Hounslow (Novel)		43	49	Ν
	β82Lys→Arg	Taradale (Novel)		48.5±0.6 (n=25)	28	Y

	Mutation	Name	Comments	%	ΔΜ	TMS
βΤ9	β82Lys→Met	Helsinki	Е		3	N
	β83Gly→Asp	Pyrgos	$\beta T (9-10-11)^{5+}$	54	58	N
	β83Gly→Cys	Ta-Li	Dimerises	Reduced 41	46	Ν
	β85Phe→Ser	Buenos Aires		35	-60	Y
	β86Ala→Val	Novel, Izmir		47	28	Y
	β87Thr→Ile	Quebec-Chori (Novel)		~40	12	Y
	β87Thr→Ile & β6Glu→Val	Quebec-Chori with Sickle cell trait	Moderate to severe sickle cell disease	60	12	Y
	β87Thr→Lys	D-Ibadan		48	27	Ν
BT10	β87Thr→Pro	Valletta		~50	-4	Y
piio	β90Glu→Asp	Pierre-Bénite	Е	48	-14	Y
	β90Glu→Gly	Roseau-Pointe a Pitre		11	-72	Y
	β90Glu→Lys	Agenogi		~44	-1	Ν
	β91Leu→Arg	Caribbean		32	43	N
	β91Leu→Pro	Sabine	HzB, SHA	As received 7 Reduced 26	-16	Y
	β93Cys→Arg	Okazaki		48	53	N
	β94Asp→Asn	Bunbury	mE	~43	-1	N
	β95Lys→Asn	Detroit		50	-14	Ν
	β95Lys→Glu	N-Baltimore		~46	1	Y
	β97His→Asn	Santa Clara		52	-23	Y
	β98Val→Met	Köln	HzB, mHA	Reduced 35	32	NY
	β99Asp→Asn	Kempsey	Е	~48	-1	Y
	β99Asp→His	Yakima	Е	43	22	N
	β101Glu→Ala	Youngstown (Novel)		43	-58	Y?
βT11	β101Glu→Asp	Potomac	Е	46	-14	Y
	β 103Phe \rightarrow Ile or Leu	Saint Nazaire or Heathrow	E	41	-34	Y
	β103Phe→Val	Sparta	mE	18	-48	Y
	β104Arg→Lys	Alzette		52	-28	Y
	β104Arg→Ser	Camperdown		51	-69	N
	$\beta 104 Arg \rightarrow Thr$	Sherwood Forest		54	-55	N
	β105Leu→Val	L'Aquila (Novel)	mHA	42	-14	Y
BT12	β106Leu→Pro	Southampton	de novo, SHA	18	-16	Y
p112	β108Asn→Asp	Yoshizuka		~50	1	N
	β108Asn→Lys	Presbyterian		40	14	N

	Mutation	Name	Comments	%	ΔΜ	TMS
	β108Asn→Ser	Santa Juana		44	-27	N
	β109Val→Leu	Johnstown	mE	47	14	Y
	β109Val→Met	San Diego	Е	54	32	Y
	β 111Val \rightarrow Phe	Peterborough	mHA	34	48	N
	β113Val→Glu	New York	Silent by ce- HPLC	43	30	Y
BT12	β116His→Arg	Sfax		55	19	N
p112	β116His→Tyr	Rhode Island (Novel)		45	26	Y
	β118Phe→Cys	Harrow		39	-44	N
	β118Phe→Tyr	Minneapolis-Laos		45	16	Y
	β119Gly→Asp & Sickle	Fannin-Lubbock I			58	N
	β111Val→Leu/ β119Gly→Asp	Fannin-Lubbock II		40	72	Y
	β121Glu→Gln	D-Los Angeles, D-Punjab		~40	-1	N
	β121Glu→Lys	O-Arab		~34	-1	N
	β121Glu→Val	Beograd		40	-30	N
	β124Pro→Arg	Khartoum		35	59	Y
	β124Pro→Gln	Ty Gard	Е	41	31	Y
	β125Pro→Thr & Lepore B-W	Novara (Novel)			4	Y
07512	β126Val→Ala & D-Punjab	Beirut		49	-28	N
B113	β126Val→Glu	Hofu		37	30	Y
	β126Val→Leu	Molfetta		49	14	N
	β128Ala→Asp	J-Guantanamo	Target cells	45	44	Y
	β128Ala→Val	Sitia		44	28	Y
	β129Ala→Asp	J-Taichung		36	44	Y
	β129Ala→Val	La Desirade		39	28	Y
	β131Gln→Glu	Camden		~46	1	Y
	β131Gln→His	Silver Springs		42	9	Y
	β132Lys→Gln	K-Woolwich		(44)	0	N
	β133Val→Ala	Renert (Novel)		43	-28	Y
	β134Val→Glu	North Shore	mHA	31	30	Y
	β135Ala→Asp	Beckman		51	44	Y
0714	β135Ala→Val	Alperton (Novel)	also with β -thal	48	28	Y
p114	β136Gly→Ala	Petit Bourg		52	14	Y
	β136Gly→Asp & S	Норе		50 (incl δ)	58	Ν
	β139Asn→Lys	Hinsdale		47	14	Ν
	β140Ala→Asp	Himeji		28	44	Y

	Mutation	Name	Comments	%	ΔΜ	TMS
	β140Ala→Asp	Himeji		28	44	Y
	β 142Ala \rightarrow Thr	Inglewood		45	30	Y
	β143His→Arg	Abruzzo	Е	43	19	Ν
βT14	β143His→Tyr	Old Dominion/ Burton-upon-Trent		49.3±0.9 (n=6)	26	N
	β144Lys→Asn	Andrew-Minneapolis	Е	52	-14	N
	β144Lys→Met	Barbizon		~45	3	Ν
	β145Tyr→Cys	Rainier	(strong -S-S-), E	45	-60	NY
0T15	β145Tyr→His	Bethesda	Е	46	-26	Ν
β115	β146His→Leu	Cowtown	Е	53	-24	Ν
	β146His→Tyr	Bologna-St.Orsola	ME	54	26	Ν
	β147TKLAFLLSNFY	Tak	Mr 17,165.79	42	1299	Ν

δ -chain variants

Mutation	Name	ΔM
δ16Gly→Arg	Hb A ₂ ' or Hb B ₂	99

$^{G}\gamma$ -chain variants

Mutation	Name	Comment	ΔΜ
^G γ63His→Tyr	F-M-Osaka	Cyanosis	26
^G γ65Lys→Asn	F-Clarke		-14

Hybrids

Mutation	Name	ΔM	TMS
δ22 β50	Lepore-Hollandia (15836.23 Da)	-31	Ν
δ50 β86	Lepore-Baltimore (15822.20 Da)	-45	Ν
δ87 β116	Lepore-Boston-Washington (15865.23 Da)	-2	Y
Αγ80 β87	Kenya (15922.23 Da)	55	Ν
β22 δ50	P-Nilotic (15955.33 Da)	88	Ν

Notes

 $\Delta M: Nominal mass change from normal due to mutation.$ %: 100 x Variant / (variant + normal) in heterozygotes. Determined from %BPI valuesin MaxEnt processed data, which was centred using areas.(%): Determined from HPLC data as 100 x Variant / (Variant + A₀).In all +58 Da variants, δ is included in intensity of variant.~%: Estimated using mass change from normal. Less accurate than %.^a Post translational modificationE: erythrocytosis, mE: mild erythrocytosis, ME: marked erythrocytosismHA or SHA: mild or severe haemolytic anaemia (HA)Cyan: CyanosisHzB: Heinz bodies $<math>\alpha$ -CT: Recommend α -chymotrypsin digest for identification.

AR: From as received sample. Red: reduced with dithiothreitol.

 β 119Gly \rightarrow Asp/ β 111Val \rightarrow Leu, for example, implies both mutations occur in the same chain. β 126Val \rightarrow Ala & D-Punjab, for example, implies the variant occurs in a compound heterozygote.

TMS: Indicates whether or not the tryptic peptide containing the variant needs sequencing by tandem MS in order to identify the variant.

N: Tandem MS is not required. Identifying the tryptic peptide containing the variant identifies the variant. This occurs when there is only one mutation in the peptide that can give the mass change from normal (Δ M) by a single base change in the nucleotide codon. This also occurs when the variant involves Arg or Lys (excluding Arg \leftrightarrow Lys) to either create a 'new' tryptic cleavage site and hence two 'new' smaller peptides or abolish an existing cleavage site to combine two adjacent peptides into one 'new' larger peptide.

Y: Tandem MS is required when two or more possibilities occur in the tryptic peptide containing the variant and ce-HPLC data are not available for comparison purposes.

NY: Tandem MS may be required due to poorly defined peptide ions in the digest, or when ce-HPLC data are not available to establish the polarity change due to the mutation.

155 α -chain variants including 46 that were novel when first submitted for analysis by mass spectrometry.

166 β -chain variants including 31 that were novel when first submitted for analysis by mass spectrometry.

 1δ -chain variant.

 $2 {}^{G}\gamma$ -chain variants

5 hybrids.

Total: 329 different variants, including 77 that were novel when first submitted for analysis by mass spectrometry.

Yokohama is not included in the total number of β -chain variants.

SECTION 7

References

REFERENCES

One of the key references in this work is:

Updates of the HbVar database of human hemoglobin variants and thalassemia mutations. B. Giardine, J. Borg, E. Viennas, C. Pavlidis, K. Moradkhani, P. Joly, M. Bartsakoulia, C. Riemer, W. Miller, G. Tzimas, H. Wajcman, R.C. Hardison and G.P. Patrinos, Nucleic Acids Res. **42** (Database issue), D1063-9 (2014).

Available on-line as: A Database of Human Hemoglobin Variants and Thalassemia Mutations at <u>https://globin.bx.psu.edu/hbvar/html</u> (last accessed June 2021).

Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides, P Roepstorff amd J Fohlman, Biomed.Mass Spectrom., **11**, 601 (1984).

The determination of protein, oligonucleotide and peptide molecular weights by ion-spray mass spectrometry. T.R. Covey, R.F. Bonner, B.I. Shushan and J. Henion, Rapid Commun.Mass Spectrom. 2, 249-256 (1988).

Tandem Mass Spectrometry on the Clinical Analysis of Variant Hemoglobins, A.M. Falick, C.H.L. Shackleton, B.N. Green and H.E. Witkowska, Rapid Commun.Mass Spectrom., **4**, 396-400 (1990).

Electrospray MS, LSIMS and MS/MS for the rapid detection and characterization of variant hemoglobins, B.N. Green, R.W.A. Oliver, A.M. Falick, C.H.L. Shackleton, E. Roitman and H.E. Witkowska, in A.L. Burlingame and J.A. McCloskey (eds), Biological Mass Spectrometry, Elsevier, Amsterdam, 1990, pp129-146.

Electrospray Mass Spectrometry in the Clinical Diagnosis of Variant Hemoglobins, C.H.L. Shackleton, A.M. Falick, B.N. Green and H.E. Witkowska, J. Chromatogr., **562**, 175-190 (1991).

The Application of Electrospray Mass Spectrometry to the Characterisation of Abnormal or Variant Haemoglobins, R.W.A. Oliver and B.N. Green, Trends Anal.Chem., **10**, 85-91 (1991).

Sickle Cell Disease in a Patient with Sickle Cell Trait and Compound Heterozygosity for Hemoglobin S and Hemoglobin Quebec-Chori, H.E. Witkowska, B.H. Lubin, Y. Beuzard, S. Baruchel, *et al.*, N.Engl.J.Med., **325**, 1150-1154 (1991).

Disentangling electrospray spectra with maximum entropy, A.G. Ferrige, M.J. Seddon, B.N. Green, S.A. Jarvis and J. Skilling, Rapid Commun. Mass Spectrom. **6**, 707-711 (1992).

Characterization of hemoglobin Lepore variants by advanced mass spectrometric methods, M. De Caterina, P. Esposito, E. Grimaldi, G. Di Maro *et al.*, Clin.Chem., **38**, 1444-48 (1992).

Intact Protein Electrospray Ionization Tandem Mass Spectrometry Can Be the Sole Technique Used for Confirming the Structure of a Variant Hemoglobin, H.E. Witkowska, B.N. Green, M. Morris and C.H.L. Shackleton, J.Mass Spectrom. and Rapid Commun.Mass Spectrom., **31**, S111-116 (1996).

A Novel Silent Posttranslational Mechanism Converts Methionine to Aspartate in Hemoglobin Bristol (β67[E11] Val-Met to Asp), D.C. Rees, J. Rochette, C. Schofield, B. Green, M. Morris, N.E. Parker, H. Sasaki, A. Tanaka, Y. Ohba and J.B. Clegg, Blood, **88**, 341-348 (1996).

Potential of electrospray mass spectrometry for quantifying glycohemoglobin, N.B. Roberts, B.N. Green and M. Morris, Clin.Chem., **43**, 771-778 (1997).

The Effect of an Unusual Haemoglobin Variant (β 51Pro \rightarrow His) on Haemoglobin A_{1C} Measurement, K. Wiener, N.B. Roberts and B.N. Green, Ann.Clin.Chem., **35**, 321-323 (1998).

Hemoglobin Old Dominion/Burton-upon-Trent, β 143 (H21) His \rightarrow Tyr, Codon 143 CAC \rightarrow TAC – a Variant with Altered Oxygen Affinity that Compromises Measurement of Glycated Hemoglobin in Diabetes Mellitus: Structure, Function and DNA sequence, G.E. Elder, T.R.J. Lappin, A.B. Horne, V.F. Fairbamks, *et al.*, Mayo Clin.Proc., **73**, 321-328 (1998).

Haemoglobin Le Lamentin ($\alpha 20$ (B1) His \rightarrow Gln) in a British family: Identification by electrospray mass spectrometry, T.M. Reynolds, F. McMillan, A. Smith, A. Hutchinson and B. Green, J.Clin.Pathol., **51**, 467-470 (1998).

Quantification of ^Gγ- and ^Aγ-globins by electrospray ionisation mass spectrometry, S.F. Ofori-Acquah, B.N. Green, B.J. Wild, M.R.A. Lalloz and D.M. Layton, Int.J.Mol.Med., 2, 451-453 (1998).

Hydrops fetalis secondary to homozygous alpha thalassemia in a very low incidence area, M. Bowers, M.F. McMullin, B.N. Green and F. Jones, CME Bulletin Haematology, **2**, 54-56 (1999).

Hb Watford [β 1(NA1)Val \rightarrow Gly]: a new, clinically silent hemoglobin variant in linkage with a new neutral mutation [Cap +36 (G \rightarrow A), C. Fisher, J. Hanslip, B.N. Green, V. Gupta, J.M. Old and D.C. Rees, Hemoglobin, 24, 347-353 (2000).

Long-term evaluation of electrospray ionization mass spectrometric analysis of glycated hemoglobin, N.B.Roberts, A.B.Amara, M.Morris and B.N.Green, Clin.Chem. 47, 316-321 (2001).

Rapid identification of hemoglobin variants by electrospray ionization mass spectrometry, B.J. Wild, B.N. Green, E.K. Cooper, M.R.A. Lalloz, S. Erten, A.D. Stephens and D.M. Layton, Blood Cells, Molecules and Diseases, **27**, 691-704 (2001).

A second case of Hb Renert [β 133(H11)Val \rightarrow Ala, G. Wilson, P. Forrest, S. Heppinstall, B.N. Green, A.C. Goodeve, A.R. Peake, J.T. Reilly, N. Porter and D.C. Rees, Hemoglobin, **25**, 337-340 (2001).

Mass spectral analysis of asymmetric hemoglobin hybrids: Demonstration of Hb FS ($\alpha_{2\gamma}\beta^{S}$) in sickle cell disease, S.F.Ofori-Acquah, B.N. Green, S.C. Davies, K.H. Nicolaides, G.R. Sergeant and D.M. Layton, Anal.Biochem, **298**, 76-82 (2001).

Increasing recognition of haemoglobin Le Lamentin, K. Wiener, X. McFarlane and B.N. Green, J. Clin.Pathol., **54**, 970 (2001).

Inherited haemoglobin disorders: an increasing global health problem, D.J. Weatherall and J.B. Clegg, Bulletin of the World Health Organisation. **79**, 704-712 (2001).

HbVar: A relational database of human hemoglobin variants and thalassemia mutations at the globin gene server, R.C. Hardison, D.H.K. Chui, B. Giardine, C. Riemer, G.P. Patrinos, N. Anagnou, W. Miller and H. Wajcman, Hum.Mutat. **19**, 225-33 (2002). (http://globin.bx.psu.edu).

Characterization of the elusive disulfide bridge forming human Hb variant: Hb Ta-Li β 83 (EF7)Gly \rightarrow Cys by electrospray mass spectrometry, D.K. Rai, B. Landin, W.J. Griffiths, G. Alvelius and B.N. Green, J.Am.Soc.Mass Spectrom., **13**, 187-191 (2002).

Haemoglobin Wayne in a British family: Identification by electrospray ionisation mass spectrometry, T.M. Reynolds, T.C. Harvey, B.N. Green, A. Smith and A.J. Hartland, Clin.Chem., **48**, 2261-2263 (2002).

Atomic weights of the elements: Review 2000, J.R. de Laeter, J.K. Bohlke, P. De Bievre, H. Hidaka, H.S. Peiser, K.J.R. Rosman and P.D.P. Taylor, Pure Appl.Chem. **75**, 683-800 (2003).

Stable octomeric structure of recombinant hemoglobin $\alpha_2\beta_2 83$ Gly \rightarrow Cys, C. Fablet, M.C. Marden, B.N. Green, C. Ho, J. Pagnier and V. Baudin-Creuza, Protein Science, **12**, 690-695 (2003).

Accurate mass measurement by electrospray ionization quadrupole mass spectrometry: detection of variants differing by <6 Da from normal in human hemoglobin variants, D.K. Rai, W.J. Griffiths, B. Landin, B.J. Wild, G. Alvelius and B.N. Green, Anal.Chem., **75**, 1978-1982 (2003).

Accurate mass measurement and tandem mass spectrometry of intact globin chains identify the low proportion variant hemoglobin Lepore-Boston-Washington from the blood of a heterozygote, D.K. Rai, B.N. Green, B. Landin, G. Alvelius and W.J. Griffiths, J.Mass Spectrom., **39**, 289-294 (2004).

The number of unexpected HbA1c variants may be a greater problem in routine practice than is generally realised, T.M. Reynolds, P.J. Twomey, T.C. Harvey and B.N. Green, Diabetes Med., **21**, 1041-1044 (2004).

The potential of electrospray ionization mass spectrometry for the diagnosis of haemoglobin variants found in newborn screening, B.J. Wild, B.N. Green and A.D. Stevens, Blood Cells Mol. Dis. **33**, 308-317 (2004).

Prediction of product ion isotope ratios in the tandem electrospray ionization mass spectra from the second isotope of tryptic peptides: identification of the variant β 131 Gln \rightarrow Glu, haemoglobin Camden, B.N. Green and J.P. Williams, J.Am.Soc.Mass Spectrom, **18**, 1493-8 (2007).

Hb Leeds [β 56(D7)Gly \rightarrow Cys]: a new hemoglobin that aggravates anemia in a child with β^0 -thalassemia trait, J.P. Williams, J.H. Scrivens, B.N. Green, L.M. Farrar and M. Sutcliffe, Hemoglobin, **31**, 1-7 (2007).

Fetal haemoglobin: assessment of glycation and acetylation status by electrospray ionization mass spectrometry, A.S. Davison, B.N. Green and N.B. Roberts, Clin.Chem.Lab.Med., **46**, 1230-38 (2008).

Electrospray ionization mass spectrometric analysis of the globin chains in hemoglobin heterozygotes can detect the variants Hb C, D, and E, R.H. Bateman, B.N. Green and M. Morris, Clin.Chem., **54**, 1256-7 (2008).

Ion mobility augments the utility of mass spectrometry in the identification of human hemoglobin variants, J.P. Williams, K. Giles, B.N. Green, J.H. Scrivens and R.H. Bateman, Rapid Commun.Mass Spectrom., **22**, 3179-86 (2008).

Hb Hillingdon [alpha46(CE4)Phe-->Val (alpha1 Or alpha2)]: a new alpha chain hemoglobin, A. Babb, S. Solaiman, B.N. Green, D. Mantio and K. Patel, Hemoglobin, **33**, 503-6 (2009).

Hot electron capture dissociation distinguishes leucine from isoleucine in a novel hemoglobin variant, Hb Askew, beta54(D5)Val-->Ile, JP Williams, AJ Creese, DR Roper, BN Green and HJ Cooper, J.Am.Soc.Mass Spectrom., 20, 1707-13 (2009).

Hb Belleville [beta 10(A7)Ala-->Thr] affects the determination of Hb A1c by routine cation exchange high performance liquid chromatography, J.P. Williams, H. Jackson and B.N. Green, Hemoglobin, 33, 47-50 (2009).

Variant Haemoglobins: A Guide to Identification, B.J. Bain, B.J. Wild, A.D. Stephens and L Phelan, Wiley-Blackwell (2011) ISBN: 978-1-4051-6715-4.

About the Author

Brian Noel Green was born on Christmas Day, 1933 in Urmston Cottage Hospital on the western fringes of Manchester, UK. With two younger brothers, he lived behind an ironmonger's shop kept by his mother. His father was a draughtsman at Metropolitan Vickers Electrical Company (MV) and had converted what was originally meant to be the living room into a workshop where he repaired radios in his spare time. Thus, Brian developed an early interest in electronics and, because one of his brothers was building a 5-inch gauge model steam locomotive, also gained a useful background in metalworking. In 1955, he fulfilled one of his early ambitions to gain an amateur radio licence (call-sign G3KCB).

Brian studied at Manchester Grammar School and gained a scholarship to Manchester University, from where he graduated in 1955 with a B.Sc. in Honours General Science Section II. He then spent two years as a college apprentice at MV in Trafford Park, Manchester working

in various departments in the Company. The Research Department appeared to be more interesting than heavy electrical engineering so in 1957, Brian joined the group under John Waldron, which, amongst other scientific instrumentation projects, was involved in the development of mass spectrometers. An early recollection was of John Beynon and the development group obtaining a 'typical' spectrum of the $CO/N_2/C_2H_4$ triplet between flashovers on the MS8 - the forerunner to the MS9. John Waldron was believed to have stated that the guarantee on the MS8 would be null and void if John Beynon introduced any organic chemicals into it.

Working under Robert Craig, Brian's first project was to develop a residual gas analyser based on a 2inch radius, 180° permanent magnet (MS10). He then spent some time working on the production version of the double-focusing spark-source instrument (MS7), and in 1961 he installed one of these at the RCA labs in Princeton, NJ. This was the first mass spectrometer that Associated Electrical Industries (AEI) exported to the USA (MV became AEI in 1960).

From 1962, Brian joined the team developing AEI's 12-inch radius high-resolution double-focusing instrument, the MS9, and was involved in the installation of several of the first instruments. In those days, the only method of recording spectra was on a photographic paper chart. A major disadvantage was that exact mass measurement was undertaken by peak matching; a very time-consuming procedure. At the Montreal ASMS meeting in 1964, Klaus Biemann (MIT) described a method of recording and automatically mass-measuring whole spectra acquired on a photoplate using a focal plane instrument (CEC 21-110). This announcement created panic at AEI, and a program was started immediately by John Halliday aiming to show that it was feasible to electrically record and mass measure entire 10,000 resolution spectra at 10 seconds/decade in mass with 10 ppm mass accuracy. This work culminated in the installation of an MS9 at Yale University Medical School (Sandy Lipsky) in early 1965, and Brian then spent 26 weeks showing experimentally, with Walt McMurray's help, that digitised data from analogue signals could be accurately mass measured. At that time, the fastest available digitizer operated at 1.5 kHz and the data were tape recorded and played back at a slower speed, a somewhat impracticable procedure. Nevertheless, AEI's three papers given at the ASMS meeting that year set the basis for the later explosion of data system processing of mass spectra as computers and digitisers developed. Brian met his future wife, Nancy, during his stay at Yale, and they married in 1967.

After an excursion into ESCA with Mickey Barber, Brian left AEI and re-joined Robert Craig in 1972 at the recently formed (1969) VG Micromass Company (MM) in Winsford, Cheshire, where he became technical manager with responsibility for the design, development and application of single- and double-focusing mass spectrometers for organic analysis. He was directly involved in the design and

development, in 1973, of the first double-focusing instrument made by VG: the 5-inch radius magnetic sector MM 7070. The first instrument had vertical geometry for Knudsen cell work, but thereafter, all organic instruments manufactured by VG Micromass had horizontal geometry in order to facilitate the high pumping speed needed for chemical ionisation. Over 500 MM 7070s had been manufactured when the instrument was superseded in 1987.

In 1974, Brian moved with the organic analysis part of the business (VG Organic) to Altrincham. In 1976, he was involved with the design and development of the MM ZAB (Zero Alpha Beta aberrations), a 11.754-inch radius double-focusing magnetic sector instrument. This was designed to a performance specification proposed by John Beynon (University of Swansea) in order to undertake MIKES (mass-analysed ion kinetic energy) experiments. Consequently, the ZAB was a reverse-geometry instrument.

A significant milestone in sector instrument design was the development of fully laminated magnets using grain-oriented 0.3 mm steel strip. Brian did the design work and Peter Burns the mechanical design and manufacture (1980). This innovation considerably increased the scanning speed of magnetic sectors, reduced hysteresis, stray fields and defocusing effects, and gave a 20% increase in the mass range compared with previous solid-core magnets. It was also introduced on the ZAB magnet and led to VG Analytical receiving the Queen's Award for Technological Achievement in 1987.

Following the 1980 invention of fast-atom bombardment (FAB) ionisation by Mickey Barber and the UMIST group, the mass range of labile organic compounds directly accessible to analysis by mass spectrometry increased dramatically. Brian worked closely with the UMIST team on the early applications of FAB and worked to develop extended mass range instruments that were capable of taking advantage of the new ionisation technique. The analysis of intact insulin (1982) spawned an interest in protein analysis that has remained with Brian until the present.

The application of mass spectrometry in the environmental field, particularly dioxin analysis, stimulated the development of specifically tailored instrumental control and processing software. In this field, sensitivity is paramount. Since the method used GC/MS with helium as the carrier gas, a simple inventive step, not published at the time (1985), was the development of an EI source that operated near to the ionisation potential of helium. This significantly reduced the suppression of sample ions by helium ions, and substantially increased the sensitivity. Derivatives of the MM 7070 developed during this period are still in use today and are considered to be the reference standard for dioxin determination.

Brian's wife, Nancy, died in 1985, the same year he was recognised by the Crown for his contributions to mass spectrometry when he was appointed an Officer of the Order of the British Empire. Whilst taking a subsequent break with his younger daughter, he met a piano dealer from whom he bought a player piano for \pounds 50. After substantial renovation, this became one of Brian's main out-of-work interests.

Brian continued in his development role within the organic group of companies and was the driving force behind the development of electrospray ionisation (ESI) within the Company. In 1988, work was started, with Stuart Jarvis, developing an ESI source on the already existing quadrupole instrument. The first instrument was delivered to Robin Aplin (University of Oxford) in 1990. Alone, or in combination with liquid chromatography, this softest of the ionisation techniques created an explosion in the application of mass spectrometry to the analysis of labile molecules and brought mass spectrometry to a much wider audience in the life, pharmaceutical and clinical sciences. ESI also extended the mass range of molecules that could be analysed by mass spectrometry, considerably expanding the areas of interest to at least 500kDa molecular weight. Brian's most cited collaborative paper (278 citations) is the 1992 discussion on the application of Maximum Entropy algorithms (developed by John Skilling) to the disentanglement of electrospray multiply charged mass-to-charge ratio data in order to generate spectra on a true mass scale.

In 1996 Brian was recognised by the British Mass Spectrometry Society and received the Aston Medal, which is awarded to scientists who have worked in the UK for "outstanding contributions to knowledge in the biological, chemical, engineering, mathematical, medical, or physical sciences relating directly to outstanding exploitation, application or development of mass spectrometry".

Since the mid-90's, Brian has focused much of his spare time on the application of mass spectrometry to the analysis of proteins, particularly haemoglobin and related molecules. He has developed protocols for the rapid identification of variants in human haemoglobin by mass spectrometry and has identified more than 320 different variants including 77 that had not been previously reported in the literature at the time they were analysed.

In October 2017, Brian celebrated 60 years of involvement with mass spectrometry. He is a named author on more than 140 scientific publications (110 since 1990), the majority of which have been written in collaboration with academic and industrial partners. Brian has two daughters, Katy and Meg, and two grandchildren.

Key references (not listed above)

- 1. The Performance of a Fully Laminated Magnet for an Integrated GC/MS/DS Combination, P. Burns, B.N. Green and D.S. Millington, presented at 28th Annual Conference on Mass Spectrometry and Allied Topics, New York, NY, May 25-30 (1980).
- Fast Atom Bombardment Mass Spectrometry of Bovine Insulin and Other Large Peptides, M. Barber, R.S. Bordoli, G.J. Elliott, R.D. Sedgwick, A.N. Tyler and B.N. Green, J. Chem. Soc., Chem. Commun., 936-938 (1982).
- 3. A High Field Magnet with Fast Scanning Capabilities, J.C. Bill, B.N. Green and I.A.S. Lewis, Int. J. Mass Spectrom., Ion Phys., 46, 147-150 (1983).
- 4. Application of Electrospray Mass Spectrometry to the Characterisation of Recombinant Proteins up to 44kDa, A. Van Dorsselaer, F. Bitsch, B. Green, S. Jarvis, P. Lepage, R. Bischoff, H.V.J. Kolbe and C. Roitsch, Biomed. Environ. Mass Spectrom., **19**, 692-704 (1990).
- 5. The Study of Intact Proteins and Glycoproteins by Electrospray M.S., B.N. Green and R.W.A. Oliver, Biochem. Soc. Trans., **19**, 929-935 (1991).
- Analysis of Complex Protein and Glycoprotein Mixtures by Electrospray Ionization Mass Spectrometry with Maximum Entropy Processing, Brian N. Green, Therese Hutton and Serge N. Vinogradov, in Methods in Molecular Biology, Vol. 61: Protein and Peptide Analysis by Mass Spectrometry, ed. J. R. Chapman, 279-294 (1996), Humana Press Inc., Totowa, NJ.
- 7. Exact Mass Measurement of Polar Organic Molecules at Low Resolution Using Electrospray Ionization and a Quadrupole Mass Spectrometer, A.N. Tyler, E. Clayton and B.N. Green, Anal. Chem., **68**, 3561-3569 (1996).
- Electrospray Ionization Mass Spectrometric Determination of the Molecular Mass of the ~200kDa Globin Dodecamer Subassemblies in Hexagonal Bilayer Hemoglobins, B.N. Green, R.S. Bordoli, L.G. Hanin, F.H. Lallier, A. Toulmond and S.N. Vinogradov, J. Biol. Chem., 274, 28206-28212 (1999).

This book is a collation of the studies of Brian Green OBE on the analysis of human haemoglobin variants by mass spectrometry over the period from the introduction of Electrospray Ionisation in the late 1980s to his retirement in 2018.

The work describes the five steps that he employed in determining the mutations in variant haemoglobins following the identification of a suspicious result from routine clinical investigations. Over the years he developed a number of tools and procedures that allowed for the unambiguous determination of amino acid mutations in the globin chains, and the underlying mass spectrometry experiments that underpin these conclusions.

Examples are given for mutations in each of the tryptic digest peptide chains for both α - and β -globin, with a step-by-step guide to sample preparation, data collection, data processing and data analysis.

During the course of these studies 329 different human haemoglobin variants were characterised, namely; 155 α -chains, 166 β -chains, 1 δ -chain, 2 ^G γ -chains and 5 hybrids. 77 variants (46 α -chain and 31 β -chain) were novel when first encountered by the author. With few exceptions (<2%), all the samples originated from patients resident in the UK.