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Goal

The objective of this technical note is to demonstrate the utility of pyrolysis-gas
chromatography-Orbitrap™ mass spectrometry for the detection and identification of
common polymers in food and environmental samples.

Introduction

Plastics comprise a wide range of synthetic and semi-synthetic polymers, with unique
physical and chemical characteristics, and are used in products found in every aspect of
day-to-day life. Large-scale production of synthetic polymers started in the 1950s, and
by the end of the last decade, it was estimated that the global plastic production had
surpassed 400 million tons per year, of which, approximately 85% was not recycled.!

Microplastics are small particles made from synthetic polymers with a diameter

typically ranging between 5 mm and 1 pm, whereas nanoparticles cover particles sizes
of sub 1 um. Two sources of microplastics can be recognized. The primary source

is cosmetic and medical products, where microparticles—typically polypropylene,
polyethylene, and polystyrene—were added deliberately. The secondary source is debris
formed through the fragmentation of larger items made from synthetic polymers that
typically enter the environment through inadequate disposal. The fragmentation occurs
due to mechanical stress and atmospheric conditions.? Some legal steps have been
taken to limit the usage of microplastics in cosmetic products; however, secondary
sources are considered the major contributor to microplastic pollution.®

Today, microplastics are present in the terrestrial and aquatic environment. Because

of their small size they can easily migrate from the environment into the food chain.*
Microplastics may consist of not only the pure synthetic polymer but also include
residuals of the monomer, plasticizers, flame retardants, and many other toxic additives
that can have a negative impact on human health.® Over time, microplastics may
incorporate environmental contaminants such as trace metals.
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Fourier Transform Infrared (FTIR) spectroscopy, Raman
spectroscopy, and microscopy-based techniques are commonly
applied to screen samples for the presence and identification

of the chemical backbone of microplastic particles. However,
especially for microscopy-based analysis, the number of samples
that can be screened is limited. Pyrolysis gas chromatography-
mass spectrometry (py-GC-MS) presents a promising alternative
for surveillance and identification of microplastics where
throughput is critical. Furthermore, this analytical approach
enables time-saving detection of bulk amounts of micro- and
nanoplastics below the lower size limit of the microscopy
techniques.

Experimental

Sample preparation

Two sample types were investigated in this study, covering
potential contamination in environmental waters and food-
related matrices. For the stormwater analysis, the sample (1 L
total volume) was spiked with deuterated polystyrene (D,-PS).
The sample was filtered sequentially through Whatman™ 1 and
0.7 um glass fiber filters (GFFs) to collect particulates (47 mm,
GF/A and GF/F, Rowe Scientific, Wacol, Australia). The GFF
was wrapped in aluminum foil (precleaned with acetone), dried
in an orbital incubator at 50 °C (Thermoline Scientific, Wetherill
Park, Australia), weighed in a pyrolysis cup (Eco-Cup LF, Frontier
Laboratories, Japan)® to which deuterated polystyrene (Ds-PS)
was added. The milk and steak samples were freeze dried and
milled with a grinder for 30 min (Extech Equipment Pty. Ltd.,
Victoria, Australia) using an overhead shaker at 140 rpm for 2 h
to homogenize. After that, 1 g of each sample was spiked with

D,-PS and extracted by pressurized liquid extraction in pre-
cleaned 5 mL ASE cells on a Thermo Scientific™ Dionex™ ASE™
350 Accelerated Solvent Extractor. Extraction was performed with
dichloromethane at 180 °C and 1,500 psi with a heat and static
time of 5 min using three extraction cycles. The extracts were
weighed and 80 pL transferred to a pyrolysis cup. At the end, the
solvent was evaporated in a fume hood at room temperature for
30 min prior to analysis.?

Instrumental analysis

A pyrolizer (Multi-Shot Pyrolyzer™ and Auto-Shot Sampler,
Frontier Laboratories) was mounted on a Thermo Scientific™
TRACE™ 1310 Gas Chromatograph coupled with a Thermo
Scientific™ Orbitrap Exploris™ GC 240 mass spectrometer
(Figure 1). The pyrolyzer was connected to an iConnect™
Split/Splitless (SSL) Injector via a hot injection adapter. A
Thermo Scientific™ TraceGOLD™ TG-5SilMS 30 m x 0.25 mm I.D.
x 0.25 pm film capillary column (P/N 26096-1425) was used to
separate the products of the pyrolysis.

The Orbitrap Exploris GC 240 mass spectrometer was tuned

and calibrated in under one minute using perfluorotributylamine
to achieve optimal ion transmission and sub-ppm mass accuracy.
The mass spectrometer was operated in full-scan mode

using 60,000 mass resolving power (measured as FWHM at

m/z 200). Lock mass corrected data was processed using
Thermo Scientific™ Compound Discoverer™ software and Thermo
Scientific™ Chromeleon™ Chromatography Data System (CDS)
software. Additional details regarding the pyrolysis, GC, and MS
conditions are given in Table 1.

Figure 1. Instrumental setup: Multi-Shot Pyrolyzer (Frontier EGA/PY-3030D) with Auto-
Shot Sampler (AS-1020E) coupled to an Orbitrap Exploris GC 240 mass spectrometer
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Table 1. py-GC-MS conditions for environmental and food samples

Multi-Shot Pyrolyzer EGA/PY-3030D parameters

Analysis type Double-shot analysis
‘ Thermal desorption

Initial (°C) 100

Initial (min) 0

Rate (°C /min) 20

Final (°C) 300

Final (min) 1

Total time (min) 1

Pyrolysis

Initial (°C) 650

Initial (min) 0.2

Interface temperature °C 320

Trace 1310 GC System parameters

Injector type SSL with an adapter kit for gas

injection
Injection mode Split
Temperature (°C) 300
Split ratio 200:1
Carrier gas (mL/min) He, 1

Oven temperature program

Temperature 1 (°C) 40
Hold time (min) 2

Rate (°C /min) 20
Temperature 2 (°C) 320
Hold time (min) 14
Transfer line temperature (°C) 300
lonization type El

lon source temperature (°C) 280
Electron energy (eV) 70
Emission current (UA) 50
Acquisition mode Full scan
Mass range (m/z) 40-600
Resolving power setting 60,000

133.01356; 207.03235; 225.04292;
281.05114; 299.06171; 355.06993

Lock masses (m/z)

Results and discussion

A double-shot method was used for the analysis of food and
environmental samples. In this kind of analysis, the pyrolysis is
preceded by a thermal desorption (TD). Double-shot methods
are useful when very complex samples are analyzed, as the TD
step eliminates a significant part of the matrix; therefore, the
chromatogram (pyrogram) obtained after the pyrolysis is less
complicated—in other words it contains fewer interferences.

The temperature in the TD stage is lower than the temperature
applied in the pyrolysis step. During the analysis, two data files
are created, one is the chromatogram of the thermal desorption
products and the other contains the pyrolysis products. Here,
only the pyrolysis data were processed for the identification

of the polymers. The chromatogram generated during the TD
could contain potentially interesting compounds, although it was
not screened for compounds in this study. However, it is worth
highlighting the importance of TD as a clean-up technique. An
overlap of the TD total ion current chromatogram of the standard
mix and the milk sample is shown in Figure 2. This comparison
demonstrates that the TD stage removes a considerable quantity
of chemical background from the sample data.

In the first step of this study, a series of polymer standards
were subjected to pyrolysis to find characteristic fragmentation
products that can be used for polymer identification in real
samples. For data processing, the resulting pyrograms were
screened with Compound Discoverer software to find the
pyrolysis products known from the literature®’. Compound
Discoverer software can use both nominal as well as high-
resolution accurate mass (HRAM) spectral libraries.

To simplify further data treatment during the analysis of samples,
a targeted processing method was created using Chromeleon
software. The processing method included all compounds
previously identified, with the presence of a particular compound
confirmed using a minimum of three representative ions extracted
from the TIC using a mass extraction window of 5 ppm around
the exact mass.

Figure 3 shows examples of identification with the NIST Tandem
Mass Spectral Library, 2020 release (hominal mass) and Thermo
Fisher Scientific environmental contaminants library (exact mass).
Table 2 shows the pure polymers and their pyrolysis product(s)
found in the screening. In the case of polystyrene, six polymer
pyrolysis products were detected which only serves to emphasize
the complexity of this analysis. Some of these compounds can
be formed by the pyrolysis of matrix components and thus, are
not necessarily indicative (or characteristic) of the presence of a
particular polymer. For example, styrene the major pyrolysis of
polystyrene can be formed during the pyrolysis of chitin, wood,
and fish protein. Similarly, the presence phenylalanine can result
in the detection of styrene.? In this case, it is important to carefully
select pyrolysis compounds such as styrene dimers and trimers
to avoid incorrect identifications. A similar case is PVC, where

the most typical pyrolysis products are aromatic hydrocarbons.
These compounds are common environmental contaminants;
thus, it is safer to confirm the polymer identification using more
than one of the pyrolysis products to avoid a false positive result.
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Figure 2. Total ion current chromatogram (m/z 40-600) obtained for a milk sample (black chromatogram) compared with a solvent standard
of a mix of polymers (red chromatogram) after the TD step
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Figure 3. Mix of polymer standards; examples of identification with NIST library (nominal mass) and Thermo Fisher Scientific contaminants
library (exact mass library). The top spectrum is the deconvoluted spectrum, whereas the bottom one comes from the library; the molecular ion is
marked in green. A) styrene (nominal mass library); B) a-methylstyrene (nominal mass library); C) naphthalene (exact mass library); D) fluorene (exact
mass library)



In the second step of this study, real samples (prepared as
described above) were pyrolyzed to confirm the presence of
microplastic particles and identify the polymer types if particles
are present. During the data processing in Chromeleon software,
benzene, naphthalene, and fluorene were found in the stormwater
sample. As can be seen in Table 2, these compounds are

formed during the pyrolysis of PVC. Moreover, the proportions
between them were similar to the proportions in the standard.
Figure 4 shows molecular ions of benzene, naphthalene, and

Table 2. Polymers and their pyrolysis products identified

fluorene in the standard mix and in the stormwater sample. It
was concluded that PVC was present in the sample. Styrene,
allylbenzene, a-methylstyrene, and toluene were detected in

the pyrolysis chromatograms of milk and beef, indicating the
possible presence of polystyrene. However, the most indicative
polystyrene pyrolysis products, styrene dimer and styrene trimer,
were not found (Figure 5). Therefore, the contamination with
polystyrene could not be confirmed.

Polymer Pyrolysis products

Polystyrene (PS)

Styrene; styrene dimer; styrene trimer; allylbenzene; a-methylstyrene; toluene

Polypropylene (PP)

2,4-dimethyl-1-heptane; 3-5-dimethyl-1-hexane

Polyvinyl chloride (PVC)

Benzene, naphthalene, fluorene

Polymethyl methacrylate (PMMA)

Methyl methacrylate

Polycarbonate (PC) Bisphenol A

Polyethylene terephthalate (PET) Vinyl benzoate
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Figure 4. Identification of PVC, A) standard and B) stormwater sample
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Figure 5. Identification of polystyrene, A) standard and B) milk sample



The analyzed sample matrices in this proof-of-concept study
can be considered challenging due to their complexity. The
high amount of matrix compounds remaining after TD can be
easily deduced from the total ion current chromatogram. Figure
6 depicts an overlap of the stormwater sample TIC and the
mixture of standards TIC. In the most interesting retention time
range (3—18 min), the sample TIC is considerably higher than
the standard mix TIC. For such a difficult sample, nominal mass
spectrometry, especially single-quadrupole instruments, may not
be selective enough. This clearly demonstrates the advantages
of high-resolution mass spectrometry. The difference in the
selectivity between high-resolution mass spectrometry and
nominal mass spectrometry is demonstrated in Figure 7. The
storm water sample was spiked with deuterated polystyrene
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standard (D,-PS). The upper part of the figure shows an
extracted ion chromatogram of m/z 109.0934 (the exact mass of
the deuterated styrene monomer- C,H,D) +5 ppm. The use of a
5 ppm mass extraction window is the most common approach
in HRAM. On the extracted ion chromatogram, there is the
deuterated styrene peak (t, = 4.98 min) and only one additional
peak at t, = 7.47 min, moreover no baseline is present. In the
bottom part of the figure there is the same ion, however extracted
with a mass extraction window of 0.5 amu, that simulates

the resolution of a single quadrupole mass spectrometer. The
extracted ion chromatogram contains numerus peaks and an
elevated baseline, and the deuterated styrene peak is barely
distinguishable from the interfering compounds.

Figure 6. Comparison of the total ion current chromatograms (m/z 40-600). Red - mix of polymer standards; black - storm

water sample. Both TICs come from the pyrolysis step.
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Figure 7. Extracted ion chromatogram of m/z 109.0934 for a spiked storm water sample. The upper chromatogram was obtained
with a mass extraction window of +5 ppm (HRAM approach); the bottom chromatogram was obtained with a mass extraction window of
+0.5 amu (simulation of a single quadrupole mass spectrometer). The blue arrow points to the deuterated styrene peak.



Conclusion
The work presented demonstrates the following:

py-GC-Orbitrap MS is an excellent tool for the confirmation of
the presence and identity of microplastics in different sample

types.

High selectivity and sensitivity were achieved by using the
unique characteristics of the Orbitrap mass spectrometer, in
combination with a targeted screening approach using both
Compound Discoverer software and Chromeleon software.

The combination of automated sample analysis using the
pyrolizer and targeted data processing enables an automated
analysis of environmental samples.
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