
Waters UPLC, UHPLC, and HPLC Column Selection and Mobile-Phase Guide

`www.waters.com]

Selectivity Choices Nitroaromatic Compounds

UPLC: 1.6 μm / UHPLC: 2.7 μm

UPLC: 1.6 μ m / UHPLC: 2.7 μ m

UPLC: 1.6 μm / **UHPLC**: 2.7 μm

HILIC

The choice of stationary phase influences the selectivity of the separation. The bonded phases and particle substrates used in Waters™ HPLC Columns are developed to maximize the differences in analyte retention to help resolve the most demanding separation challenges.

Performance Benefits: Excellent method development column designed to give

Performance Benefits: High efficiency column designed for retention of extremely polar, Bonding: Unbonded high-purity silica solid-core

maximum efficiency as well as alternate selectivity, particularly in regard to

Mobile phase: 72% water/28% methanol (v/v) CSH Fluoro-Phenyl CSH Phenyl-Hexyl ACQUITY UPLC® with PDA Detector Compounds [EPA 8330 Standard Mixture): HSS C₁₈ 3. 1,3,5-Trinitrobenzene 4. 1,3-Dinitrobenzene HSS CN 5. Nitrobenzene Tetryl CORTECS C₁₈+ 8. 2-Amino-4,6-Dinitrotoluene CORTECS C, 9, 4-Amino-2,6-Dinitrotoluene 10. 2,4-Dinitrotoluene CORTECS UPLC T3 11. 2,6-Dinitrotoluene 13. 4-Nitrotoluene **CORTECS Phenyl** 3 9₁,13 8 14 10 11 **HSS PFP** Comparative separations may not be representative of all applications

Extend Column Performance and Lifetime

Using a guard column is an economical way to prolong analytical column lifetime without compromising chromatographic performance. VanGuard™ Column Protection Products are available in a wide selection of particle sizes and stationary phases making them ideally suited for the physical and chemical protection for all

- analytical columns. Minimal chromatographic effects and optimized performance
- Superior column protection for UPLC, UHPLC, and HPLC Columns and Sorbents with particle sizes ranging from 1.6 mm to 5 mm
- Compatible operating pressures up to 18,000 psi (1240 bar)

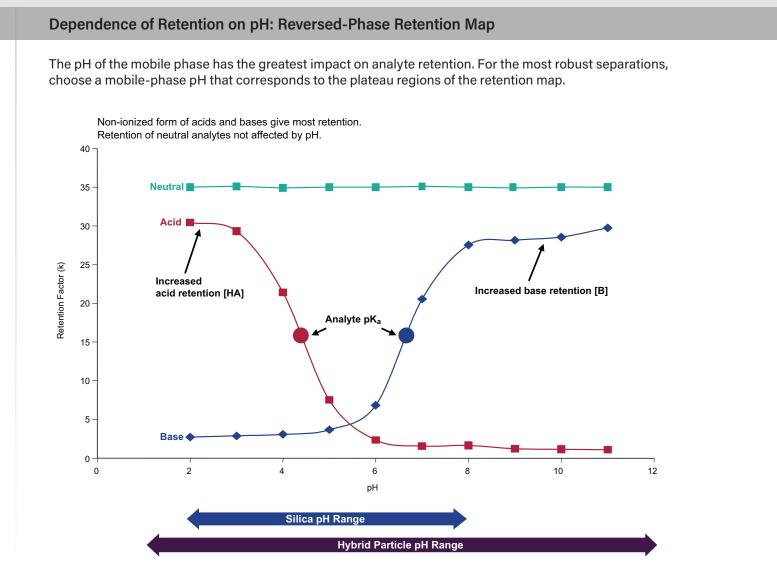
Selection Guide

VanGuard Column Protection Cartridge/Pre-column selection based on analytical column I.D.

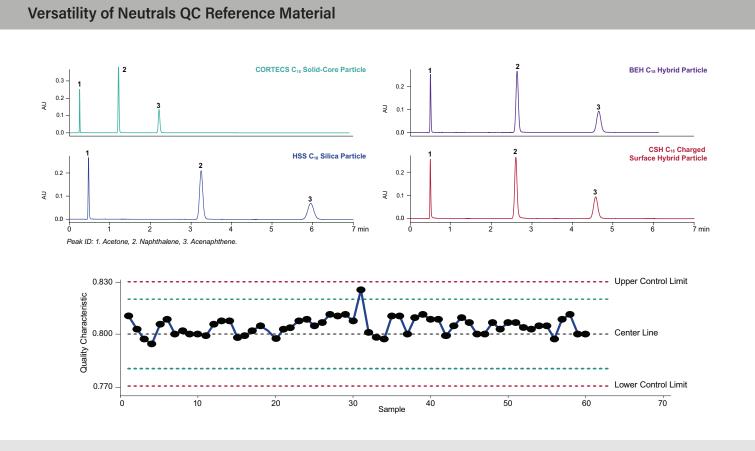
Column I.D.	Particle Size	VanGuard Format	VanGuard Dimension
2.1 mm	<2 µm	Pre-column	2.1 x 5 mm
2.1 mm	>2 µm	Cartridge Column	2.1 x 5 mm
3.0 mm	>2 µm	Cartridge Column	2.1 x 5 mm
3.9 mm	>2 µm	Cartridge Column	3.9 x 5 mm
4.6 mm	>2 µm	Cartridge Column	3.9 x 5 mm

Bonding: Trifunctional C₆ Phenyl, fully end-capped, bonded

to a silica solid-core particle substrate.


Mobile-Phase Chemical	pK_{a}	Buffer Range	Formula	Volume or Mass Required for 10 mM Mobile-Phase Concentration (per 1 L)	pH Adjustment Acid/Base	MS Compatible?
Acetic Acid (glacial)	4.8	_	CH₃COOH	0.571 mL	_	✓
Ammonium Acetate pK _a 1	4.8	3.8-5.8	CH₃COONH₄	0.770 g	CH ₃ COOH or NH ₄ OH	✓
Ammonium Acetate pK _a 2	9.2	8.2-10.2	CH₃COONH₄	0.770 g	CH₃COOH or NH₄OH	✓
Ammonium Bicarbonate	9.2, 10.3	(8.2-11.3)	NH ₄ HCO ₃	0.790 g	HCOOH or NH₄OH	✓
Ammonium Formate pK _a 1	3.8	2.8-4.8	NH₄COOH	0.640 g	HCOOH or NH₄OH	✓
Ammonium Formate pK _a 2	9.2	8.2-10.2	NH₄COOH	0.640 g	HCOOH or NH₄OH	✓
Ammonium Hydroxide	9.2	_	NH₄OH	0.675 mL	_	✓
Ammonium Phosphate, Dibasic	7.2, 9.2	(6.2-10.2)	(NH ₄) ₂ HPO ₄	1.32 g	H ₃ PO ₄ or NH ₄ OH	×
Formic Acid	3.8	_	НСООН	0.420 mL	_	✓
N-Methylpyrrolidine	10.3	_	C ₅ H ₁₁ NO	1.04 mL	_	✓
Phosphoric Acid	2.1	_	H ₃ PO ₄	0.580 mL	-	×
Potassium Phosphate, Monobasic	2.1	(1.1-3.1)	KH ₂ PO ₄	1.36 g	H₃PO₄ or KOH	×
Potassium Phosphate, Dibasic	7.2	(6.2-8.2)	K ₂ HPO ₄	1.74 g	H₃PO₄ or KOH	×
Potassium Phosphate, Tribasic	12.7	(11.7-13.7)	K ₃ PO ₄	2.12 g	H₃PO₄ or KOH	×
Pyrrolidine	11.3	_	C_4H_9N	0.833 mL	_	✓
Sodium Borate	9.1, 12.7, 13.8	(8.2-14)	Na ₂ B ₄ O ₇	2.01 g	H ₃ BO ₄ or NaOH	X
Sodium Citrate, Tribasic	3.1, 4.8, 6.4	(2.1-7.4)	HOC(COONa)(CH ₂ COONa) ₂	2.58 g	Citric Acid or NaOH	×
Triethylamine (TEA)	11.01	_	(CH ₃ CH ₂) ₃ N	1.39 mL	_	✓
Triethylammonium Acetate (TEAA) pK _a 1	4.76	3.8-5.8	(CH ₃ CH ₂) ₃ N:CH ₃ COONH ₄ (1:2)	0.695 mL TEA/0.571 mL Acetic Acid	TEA or CH₃COOH	✓
Triethylammonium Acetate (TEAA) pK _a 2	11.01	10.0-12.0	(CH ₃ CH ₂) ₃ N:CH ₃ COONH ₄ (2:1)	1.39 mL TEA/0.285 mL Acetic Acid	TEA or HCOOH	✓
Triethylammonium Formate (TEAF) pK _a 1	3.75	2.8-4.8	(CH ₃ CH ₂) ₃ N:NH ₄ COOH (1:2)	0.695 mL TEA/0.420 mL Formic Acid	TEA or HCOOH	✓
Triethylammonium Formate (TEAF) pK _a 2	11.01	10.0-12.0	(CH ₃ CH ₂) ₃ N:NH ₄ COOH (2:1)	1.39 mL TEA/0.210 mL Formic Acid	TEA or HCOOH	✓
Trifluoroacetic Acid (TFA)	0.3	_	CF₃COOH	0.743 mL	_	✓

Increase selectivity for: - Acids (Peaks 3 and 6) - Bases (Peaks 1 and 4) ■ Neutrals (Peaks 2 and 5) are largely unaffected by mobile-phase pH. The Importance of Mobile-Phase pH: Rapid Method Development Mobile-Phase pH **Enhances Selectivity for: Acids Bases Neutrals** 1. Doxylamine (BASIC) 3. Hydroxyisophthalic Acid (ACIDIC) 4. Doxepin (BASIC) 5. Flavone (NEUTRAL 6. Fenoprofen (ACIDIC) pH 7


Using a wide mobile-phase pH range is an effective approach to change

Importance of Mobile-Phase pH

compound selectivity.

Use Waters Quality Control (QC) Reference Materials to evaluate or verify key performance criteria with data generated when the system is known to be in good working order. The criteria chosen, along with the routine use of a control chart, provides an understanding of the capability of your system and can be a useful troubleshooting tool. Typical Criteria 1. Retention time range or reproducibility 2. Peak area range or reproducibility 3. Peak tailing range

Benchmarking System Performance

4. Peak resolution

6. System pressure

5. Response

Benchmarking System Performance

Instrument bandspread is one of the most practical LC instrument parameters to understand when transferring LC methods. Knowing the result of this simple measurement gives the separation scientist the ability to develop compatible methods that are independent of the LC instrument manufacturer. The following table gives recommendations on column configuration based on nominal instrument bandspread values.

System	LC Technique	Bandspread*	Recommended Column Particle Sizes and I.D.s	
Shimadzu Prominence UFLC	HPLC	41 µL	XBridge 3.5, 5 μm; XSelect 3.5, 5 μm; CORTECS 2.7 μm 3.0-4.6 mm I.D.	
Alliance™ 2695 HPLC	HPLC	29 µL		
Agilent 1260 UHPLC (600 bar)	HPLC	28 μL		
Thermo Accela UHPLC	HPLC	21 µL	XBridge 2.5, 5 μm; XSelect 2.5, 5 μm; CORTECS 2.7 μm 3.0 mm I.D.	
Agilent 1290 UHPLC (1200 bar)	UHPLC	17 μL		
ACQUITY Arc™	UHPLC	23 µL	XBridge 2.5, 5 μm; XSelect 2.5, 5 μm; CORTECS 2.7 μm 3.0 mm I.D.	
ACQUITY UPLC	UPLC	12 µL	ACQUITY UPLC BEH 1.7 μm;	
ACQUITY UPLC H-Class w/Column Manager	UPLC	12 µL	ACQUITY UPLC CSH 1.7 μm; CORTECS 1.6 μm	
ACQUITY UPLC H-Class	UPLC	9 μL	2.1 mm l.D.	

Note: The provided data is for reference only and is based on nominal values for unmodified systems. Any adjustment to the plumbing, connectivity, and configuration of the system will change the instrument bandspread and will influence the resulting chromatography.

	System	HPLC	UHPLC	UPLC
	Dispersion	>40 µL	22-29 μL	<15 µL
	Particle Size	3–5 μm	2–3 μm	<2 μm
	Routine Pressure	<4000 psi	<10,000 psi	<18,000 psi
	Column I.D.	4.6 mm (3.0 mm)	3.0 mm (2.1 mm)	2.1 mm (1.0 mm)
	Column Lenath	75-250 mm	50-150 mm	≤150 mm

Alliance HPLC

Optimized column dimension matched to Waters LC Systems.

Select column configurations for chemistries that show the MaxPeak™ Premier symbol are available in the MaxPeak Premier Column format. The MaxPeak Premier Columns utilize MaxPeak High Performance Surface (HPS) Technology which increases reproducibility, improves peak shape, and enables more accurate recovery by minimizing unwanted analyte/surface interactions.