What Do I Need for Successful Method Development?

Mark Powell Columns and Supplies Technical Support December 10, 2020

What is My Method Development Plan?

- 1. Smaller particles and superficially porous particles offer fast, efficient analysis
- 2. C18 column general-purpose column choice
- 3. Simple mobile phase
 - a) Formic acid or other additive in aqueous portion (buffer salts if necessary)
 - b) Acetonitrile or methanol as organic modifier
- 4. Start with linear gradient (5% organic to 95% organic) for reversed-phase methods
- 5. Adjust mobile phase to get the desired retention and resolution
 - a) Adequate resolution of all peaks, $Rs \ge 2.0$
 - b) Retention of first peak at least k=1
 - c) Fastest analysis time with required resolution

Shorter columns with small particle sizes can provide more efficiency and resolution in a very short time, speeding up method development

What Column Do I Choose?

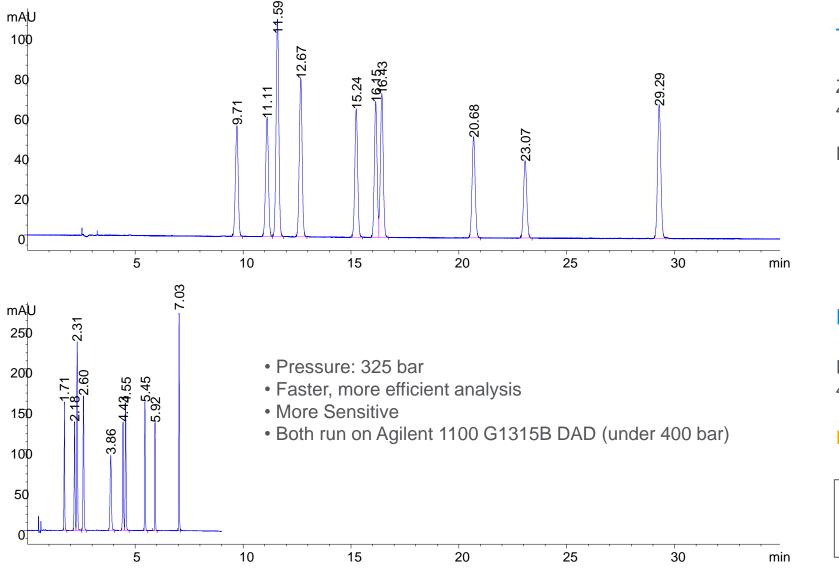
Smaller particle size offers

- Higher efficiency, shorter column, faster method
- Increased resolution
- Better sensitivity

But make sure to consider pressure limit of instrument

Smaller diameter means

Solvent savings


But this depends on instrument configuration and plumbing

- Bonded phase choices
 - Alternate selectivity
 - Match to pH of mobile phase
 - More robust column life

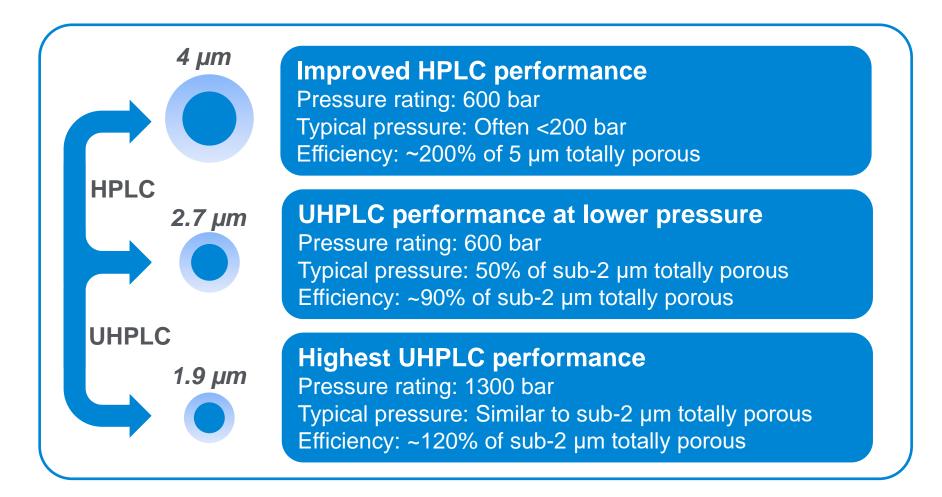
What Particle Do I Choose?

Totally Porous Particle

ZORBAX Eclipse Plus C18 4.6 x 250 mm, 5 µm

Runtime: 35 min

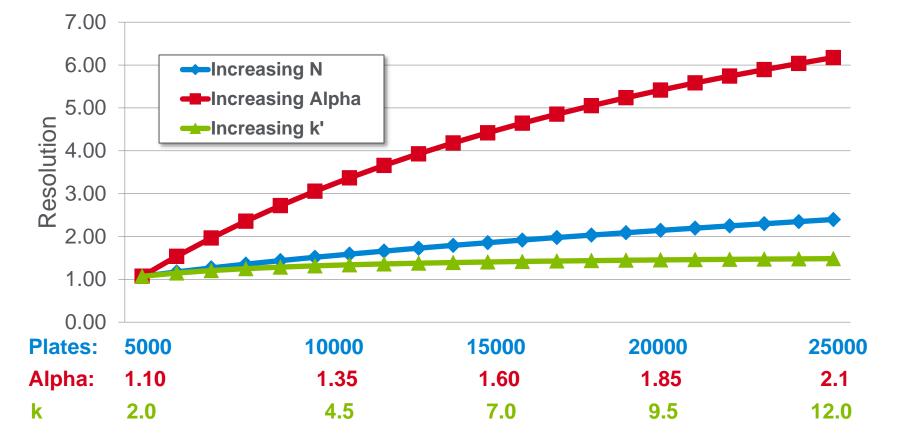
Poroshell Particle


InfinityLab Poroshell 120 EC-C18 4.6 x 100 mm, 2.7 μm

Runtime: 9 min

A: 0.1% Formic Acid in water, B: ACN Gradient: 8-33% ACN in 30 or 8 min 1 or 2 mL/min, 25 °C, 254 nm Agilent App Note, 5990-5572EN

What Particle Size Do I Choose?



Factors that Affect Resolution

$$R_s = \left(\frac{1}{4}\right) N^{0.5} \left(\frac{\alpha - 1}{\alpha}\right) \left(\frac{k}{1 + k}\right)$$

Resolution Efficiency Selectivity Retention

Selectivity impacts resolution the most

- Change bonded phase
- Change mobile phase

Evaluate Different Bonded Phases

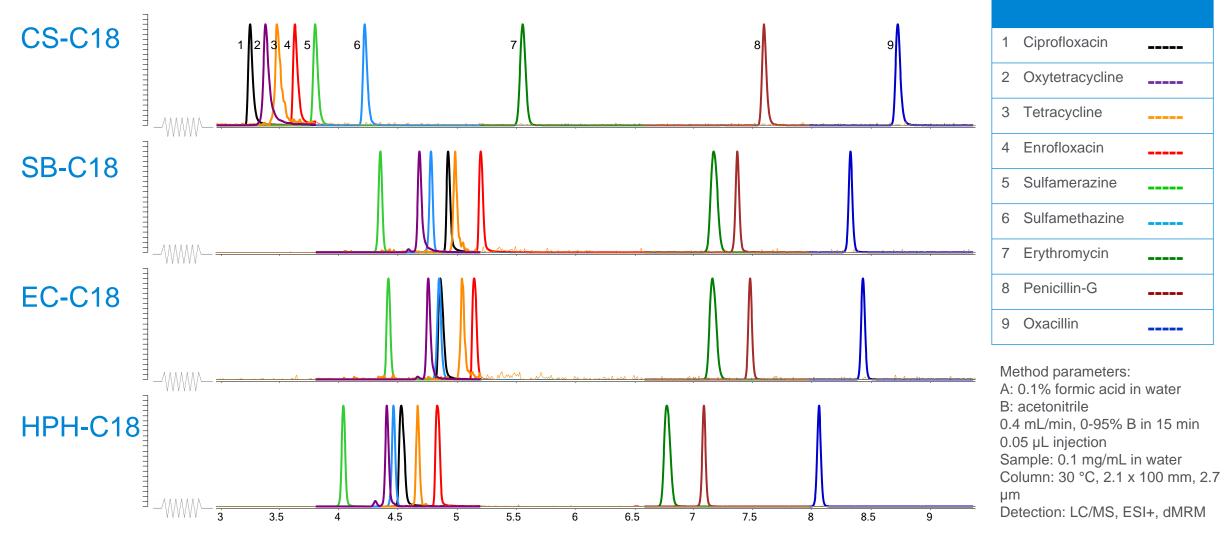
- Bonded phase affects selectivity (alpha)
- Different interactions for polar and non-polar compounds.
- Exploit other interactions with bonded phase (e.g., pi-pi)
- Changing the bonded phase can improve selectivity/resolution,
- May reduce analysis time
- Having different bonded phases available on the same particle makes development easier

Evaluating different bonded phase chemistries early can save time in optimization and generate a more robust method

The Poroshell 120 Family

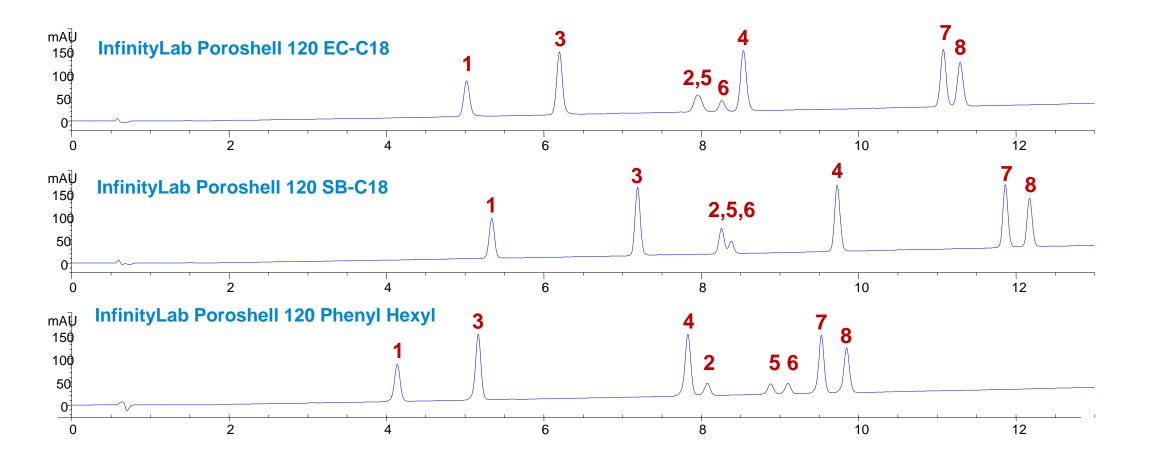
InfinityLab Poroshell 120 offers a broad portfolio to suit your needs

Best All Around	Best for Low pH Mobile Phases	Best for <mark>High pH</mark> Mobile Phases	Best for Alternative Selectivity	Best for More Polar Analytes	Chiral
EC-C18 1.9 μm, 2.7 μm, 4 μm	SB-C18 1.9 μm, 2.7 μm, 4 μm	HPH-C18 1.9 μm, 2.7 μm, 4 μm	Bonus-RP 2.7 μm	SB-Aq 1.9 μm, 2.7 μm, 4 μm	Chiral-V 2.7 μm
EC-C8 1.9 μm, 2.7 μm, 4 μm	SB-C8 2.7 μm	ΗΡΗ-C8 2.7 μm, 4 μm	PFP 1.9 μm, 2.7 μm, 4 μm	EC-CN 2.7 μm	Chiral-T 2.7 μm
Phenyl-Hexyl 1.9 μm, 2.7 μm, 4 μm			CS-C18 2.7 μm		Chiral-CD 2.7 μm
		Νε	ew!	HILIC-Z 1.9 μm, 2.7 μm, 4 μm	Chiral-CF 2.7 μm
				HILIC-OH5 2.7 μm	



What C18 Bonded Phase?

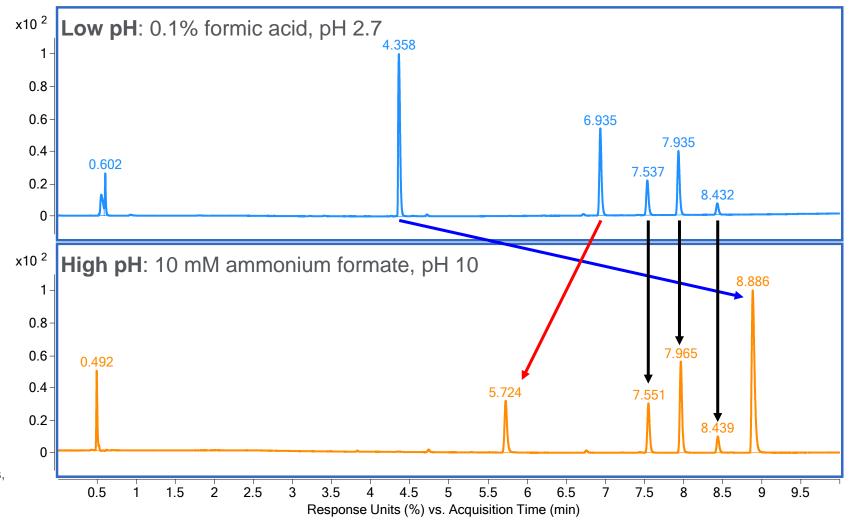
InfinityLab Poroshell 120	Chemistry	Pore Size	Endcapped	Carbon Load	Surface Area	Best For
EC-C18 1.9 μm, 2.7 μm, 4 μm		120 Å	Yes	10%	130 m²/g	General Purpose Excellent peak shape and efficiency for acids, bases, neutrals
SB-C18 1.9 μm, 2.7 μm, 4 μm		120 Å	No	9%	130 m²/g	Low pH Excellent stability and peak shape in highly acidic conditions
HPH-C18 1.9 μm, 2.7 μm, 4 μm	-o - cH _a si cH _a	100 Å	Yes	Proprietary	95 m²/g	High pH Robust performance and long lifetimes
CS-C18 2.7 μm		100 Å	Yes	Proprietary	95 m²/g	Alternate selectivity Improved peak shape and sample capacity for basic compounds with low ionic strength mobile phases High pH


Alternative Selectivity with InfinityLab Poroshell 120 C18s

Agilent application note: 5994-2358EN

Selectivity Differences Across InfinityLab Poroshell Bonded Phases

Hydrocortisone 2. β-Estradiol 3. Androstatriene-3,17-dione 4. Testosterone
 5. Ethinyl estradiol 6. Estrone 7. Norethindrone acetate 8. Progesterone


40-80 % Methanol in 14 min, DAD 260, 80 nm 0.4 mL/min,
2.1 x 100 mm column, 40 C, 0.1% formic acid in water and methanol, Agilent 1260 Method Development Solution

Agilent InfinityLab Poroshell 120 CS-C18

Mobile phase pH is a method development tool for separating ionizable compounds

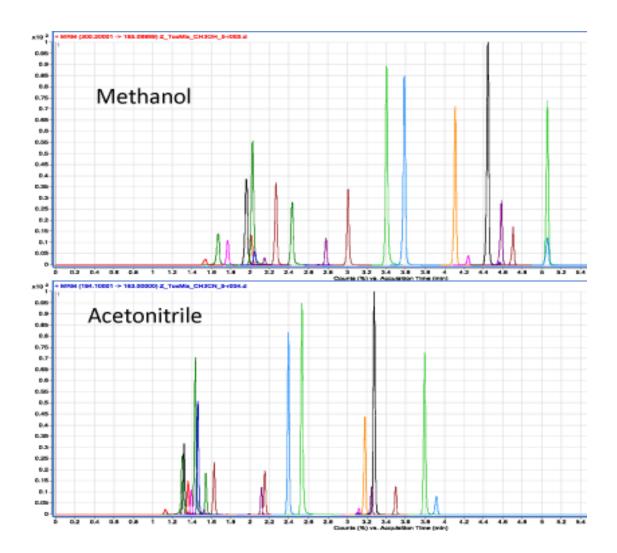
- With reversed-phase, ionizable analytes are more retained in their neutral state
- Acids are more retained at <u>low pH</u>
- Bases are more retained at <u>high pH</u>
- Neutrals are not affected by mobile phase pH

Agilent application note: 5994-2274EN

5-95% CH_3CN in 10 min, 4 min post run, mobile phase A varies, 0.4 mL/min, 2.1 x 100 mm, 2.7 µm Agilent InfinityLab Poroshell 120 CS-C18, 30 °C, DAD: 254 nm, 80 Hz; Sample: uracil, amitriptyline, butyl paraben, dipropyl phthalate, acenaphthene

What Mobile Phase Modifiers Should I Try?

Mobile Phase	Useable pH range	Recommended for Silica-Based LC Columns?	Recommended for LC/MS Use?
TFA	<1.5	Limited	No
Phosphate	1.1-3.1	Limited	No
Formic acid	<2.8	Yes	Yes
Acetic acid	<3.8	Yes	Yes
Formate	2-8-4.8	Yes	Yes
Acetate	3.8-5.8	Yes	Yes
Carbonate	5.4-7.4	Yes	Yes
Phosphate	6.2-8.2	Limited	No
Bicarbonate	6.6-8.6	Limited	Yes
Ammonia	8.2-10.2	Limited	Yes
Phosphate	11.3-13.3	Limited	No


What Organic Solvent Should I Use?

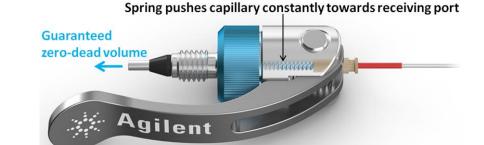
Try both

- ACN and MeOH are readily available
- Works on any bonded phase optimize separation no matter the column choice

MeOH – Higher pressure, may give better peak shape with bases, protic solvent

Acetonitrile – Aprotic, wider UV window, stronger than MeOH

InfinityLab Quick Connect and Quick Turn Fittings


- Spring loaded design
- Easy, no tools needed
- Works for all column types
- Reusable
- Consistent ZDV connection

Quick connect fitting

- Finger tight up to 1300 bar
- Hand tighten the nut, then depress the lever

Quick turn fitting

- Finger tight up to 400 bar
- Up to 1300 bar with a wrench
- Compact design

Tips for Robust Methods

- Always start method development with a new column
- Select columns with robust properties at pH of method
- Choose a quality column with long lifetimes
- Consider batch-to-batch reproducibility
- Consider scalability of particle sizes and chemistries
 for downstream method transfer
- Make sure mobile phase preparation is documented and transferrable

Agilent employs end-to-end process control for quality LC columns

www.agilent.com/chem/qualitylc

What Should I Do with a New Column?

Performance Report

SERIAL NUMBER: USDAZ01333

PART NUMBER: 959758-902 ZORBAX RRHD Eclipse Plus C18 2.1 x 100 mm, 1.8 µm COLUMN TYPE: PACKING LOT #: B09089

TEST CONDITIONS

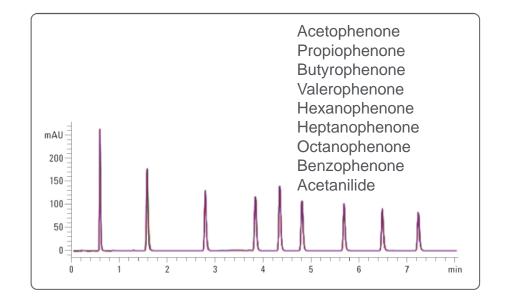
MOBILE PHASE COLUMN PRESSURE COLUMN FLOW	=	60% Acetonitrile / 40% Water 517.2 Bar 0.50 ml / min
LINEAR VELOCITY	=	0.436 cm / sec AMBIENT (Nominally 23 °C) 1 µl

QUALITY CONTROL PERFORMANCE RESULTS FOR NAPHTHALENE

			TE	ST VALUE	s	SPECIFIC	ATIONS	
		THEORETICAL P	PLATES =	22337		MIN =	21000	
		SELEC	CTIVITY =	1.90		RANGE =	1.82 - 1.9	2
		USP TAILING F. (@ 5% Peak H		1.08		RANGE =	0.98 - 1.2	0
			k' =	4.58				
	gth=254 nm (N200001	9.01						
NU -	965.0							
80								
		1.305				Sample c	omponent	s with concentrations
-						diluted in elution of		ase in the following
-						Peak	Conc	Sample
	2.2			2.132		#	(ug/ml)	Component
40-				ĩ		1	10	Uracil
				- 6		2	400 50	Phenol 4-Chloro Nitrobenzene
21						4	80	Naphthalene
-				1				
D								

Manufacturing test chromatogram is done on a modified LC system to minimize ECV and will differ from a typical lab HPLC.

- Don't expect to get the exact same result • as the performance report
- Test column performance on your instrument to have as a reference



What Should I Do With a New Column?

Benchmark new column on your system

- 1. Standard mix; test mix (5188-6529, 01080-68704; QC reference material)
- 2. Criteria like retention time, peak area, peak tailing, resolution, response, and system pressure
- 3. Theoretical plates
 - Monitor column over time
 - Troubleshoot

Chromatographic	conditions
-----------------	------------

Sample:	RRLC Checkout sample (p/n 5188-6529)
Column:	Agilent Poroshell 120
	EC C18, 3 mm × 50 mm,
	2.7 μm
Mobile phase:	A = Water
	B = Acetonitrile
Gradient:	0 min 20% B
	8 min 80% B
Flow rate:	1.2 mL/min
Stop time:	8 min
Post time:	4 min
Injection volume:	1 μL
Column temperature:	30 °C
DAD:	245/10 nm
	Ref 400/100 nm
Flow cell:	10 mm
Peak width:	<0.025 min (10 Hz)

Mobile Phase Preparation


Specified volume ACN added to a 1 L volumetric and made to volume with H₂O

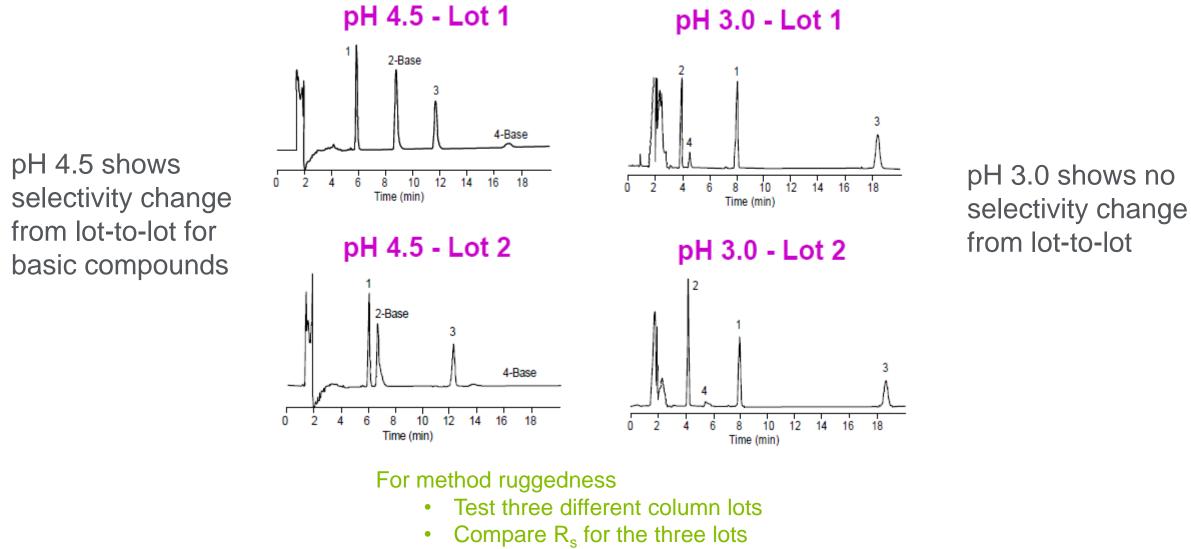
Ŧ

Specified volume H₂O added to a 1 L volumetric and made to volume with ACN

¢

500 ml H₂O added to 500 ml ACN

Method used to prepare mobile phase can significantly affect the elution


• Be consistent and document the process

Effect of Mobile Phase Preparation on Chromatography, 5988-6476EN

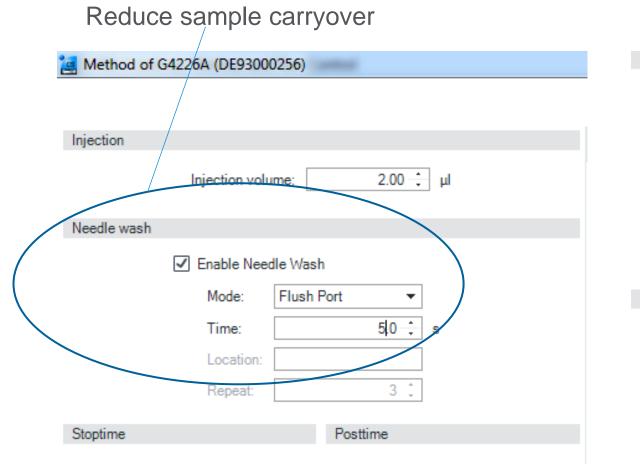
٠

What Should I Test to Make a Robust Method?

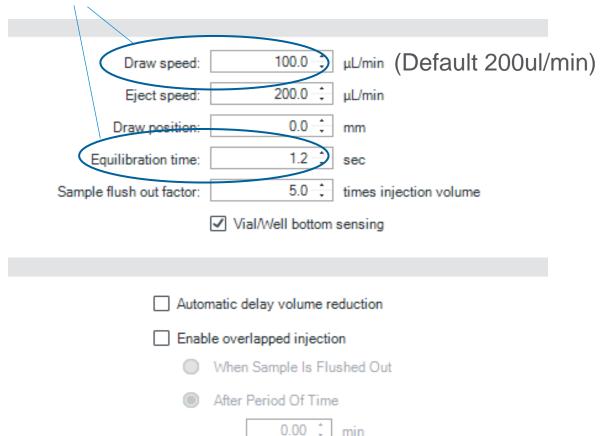
- If ΔR_s is too large, modify method

Method Setup

- What method parameters should I optimize?
- Should I use default values?



Pump Setting


🛃 Method of G7104A (DEBA300770)	– 🗆 X
	Quat. Pump (G7104A)
Flow	Advanced
1.000 📫 mL/min	Minimum Stroke
Solvents	 Automatic 20.00 μL
A: 90.00 (100.0 % Water V.03 🔻	Compressibility
B: ☑ 10.00 ÷ % 100.0 % Acetonitrile V.03 ▼	Use Solvent Types Slow down for pressure sensitive column
C: 0.00 🕻 🗶 100.0 % Acetonitrile V.03 🔹	Maximum Flow Gradient
D: 0.00 1 % 100.0 % Water V.03 -	Flow ramp up: 100.000 + mL/mir² Flow ramp down: 100.000 + mL/mir²
Pressure Limits	Primary Channel
Min: 0.00 🛟 bar Max: 1,300.00 🛟 bar	Automatic 👻
Stoptime Posttime	Mixer Selection
O As Injector/No Limit O Off	Use Mixer if installed 🗸
O 3.00 ÷ min	Timetable (1/100 events)
	V ISET
	Ok Apply Cancel

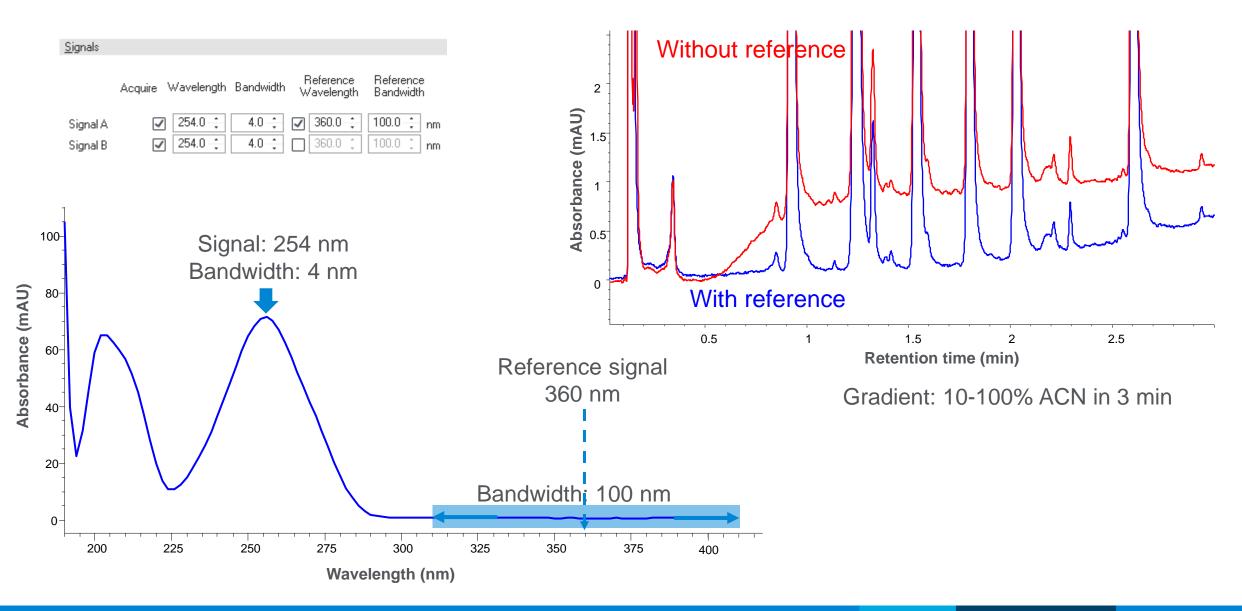
Optimize Autosampler Performance

Improved accuracy for chilled samples

min

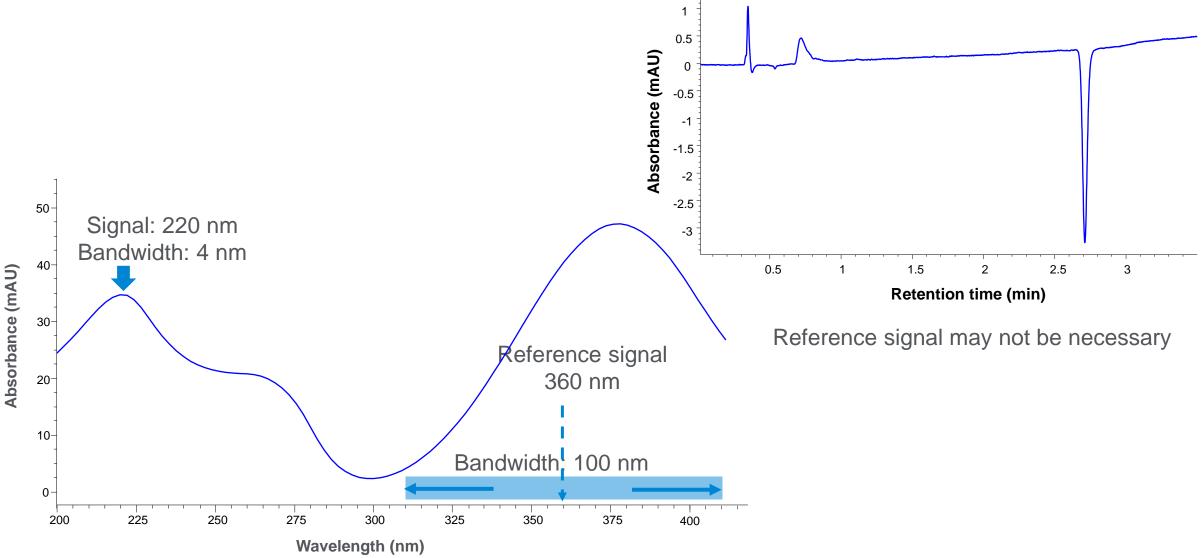
Optimize Autosampler Performance – Draw Position/Bottom Sensing

Needle Height Position Offset: Use Vial/Well Bo	<u>U.U -</u> mm	Draw position: 0.0 ↓ Equilibration time: 1.2 ↓ Ie flush out factor: 5.0 ↓ ✓ Vial/Well botton	sec times injection volume
Draw Position/Needle Height Position Offset = 0	Vial Sampler G1329B/G7129A/B	Wellplate Sampler G1367E/G4226A	Multisampler G7167A/B
	2 mL vial (sample tray)	2 mL vial 54 vial tray	2 mL vial 54 vial tray
Without bottom sensing	2 mm	4 mm	5 mm
With bottom sensing	х	1 mm	2 mm
	Well depth Needle offset	Well depth 29 mm	Vial height 32 mm

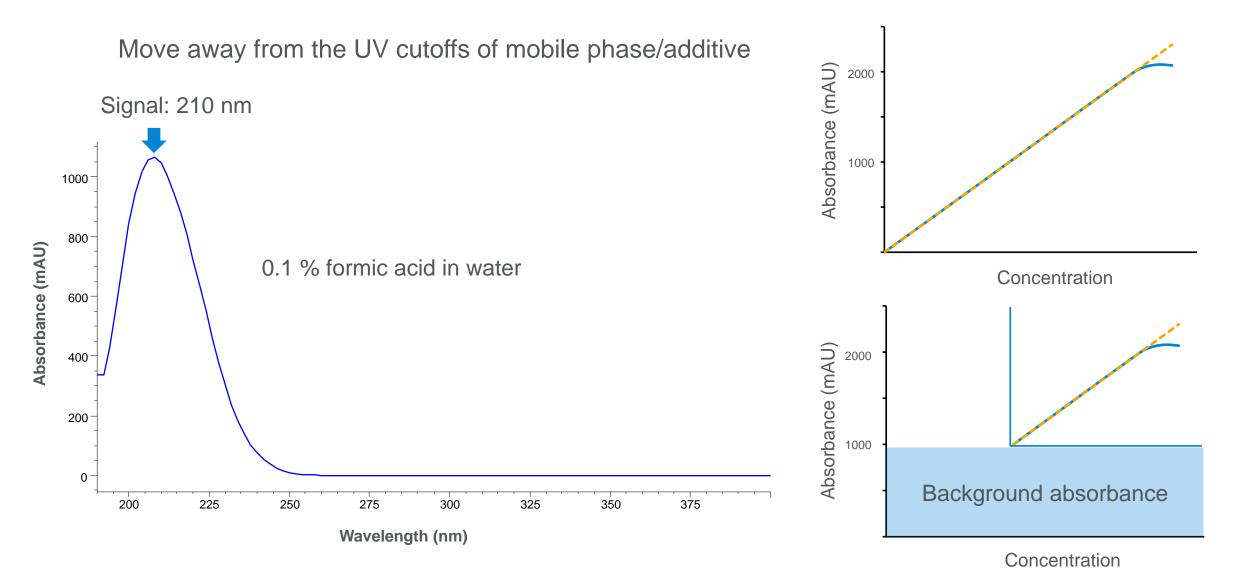


VWD and DAD Settings

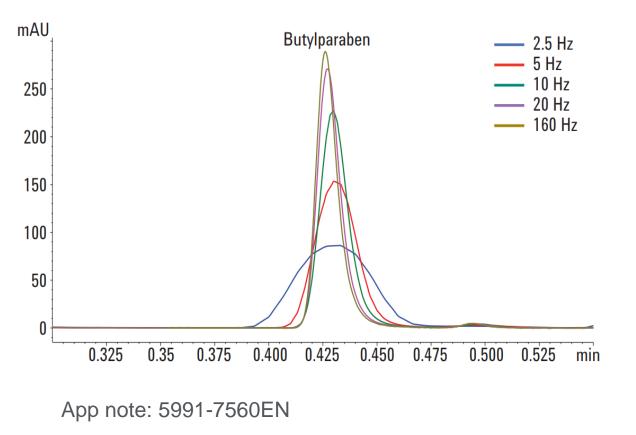
			v	/WD (G7114B)					
Signal		Advanced							
Wavelength: 250 📫 nm		Analog Output							
Peakwidth: > 0.1 min (2 s resp. time) (5 l	Hz)	Zero Offset:	5 🔅	%					
Stoptime Posttime		Attenuation: 100	v v	mAU					
As Pump/Injector	Off	Signal Polarity	Autobalance	🕌 Method of G7117B (DEBAW)2366)			_	
C 1.00 🕻 min C		Positive (+) Negative (-)						DAD (G7117B)	
				<u>Sig</u> nals			Advanced		
No bondwidth	sotting	Miscellaneous		Acquire Wavelength	Bandwidth Reference Beference		Spectrum		
No bandwidth No slit width s	•			Signal A ☑ 254.0 ÷	andwidth Wavelength Bandwidth 4.0 ÷ ✓ 360.0 ÷ 100.0 ÷ 4.0 ÷ ✓ 360.0 ÷ 100.0 ÷		Store : All	▼	
	-	Camp on required for Scan Range: 190	to	Signal C 214.8 Signal D 230.0	4.0 ‡		Range from: 190.0 - Step: 2.0 -	to <u>400.0 -</u> , nm → nm	
		Step: 2 Additional Signals	÷ nm	Signal E 260.0 ‡ Signal F 273.0 ‡ Signal G 280.0 ‡	4.0 \$ ☑ 360.0 \$ 100.0 \$ 4.0 \$ ☑ 360.0 \$ 100.0 \$ 4.0 \$ ☑ 360.0 \$ 100.0 \$	nm	Analog Output		
Only use reference	ce or not op	tion 🖉 Acquire Signal without Refe	rence	Signal H	4.0 0 360.0 0 100.0 0		Zero Offset: 5 🛟 % Attenuation: 1000 💌 mAU		
		Acquire Reference only		Peakwidth				0.D	
				< 0.0008 min (0.008	response time) (20 Hz) 3 s response time) (240 Hz) 5 s response time) (240 Hz)		Margin for negative Absorbance	Slit	m
					s response time) (160 Hz)		Autobalance	Lamps on required for acquisition	
					3 s response time) (80 Hz) s response time) (40 Hz)		Prerun	🗹 UV Lamp	
					nse time) (2.5 Hz)	min	Postrun Timetable (empty)		
				> 0.4 min (8 s respo			y modolo (ompy)		
					ponse time) (0.31 Hz)			Ok Apply	Cancel

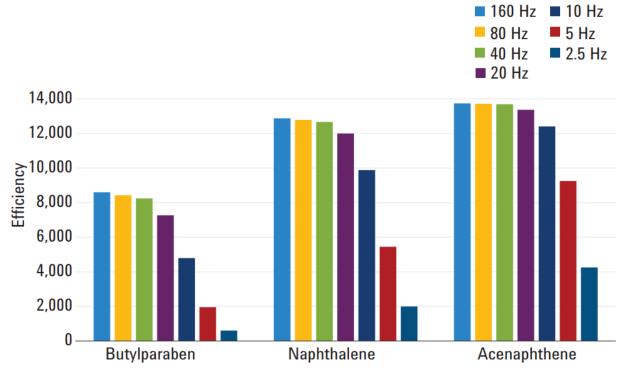

Agilent

DAD Setting – Choose the Right Signal and Reference



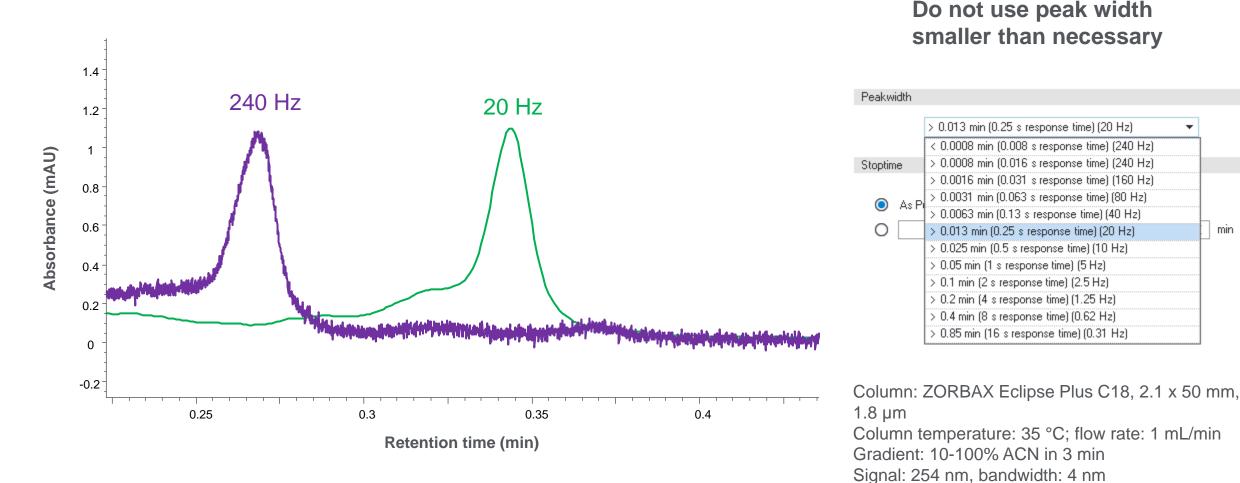
DAD Setting – Choose the Right Signal and Reference


DAD Setting – Choose the Right Signal and Reference

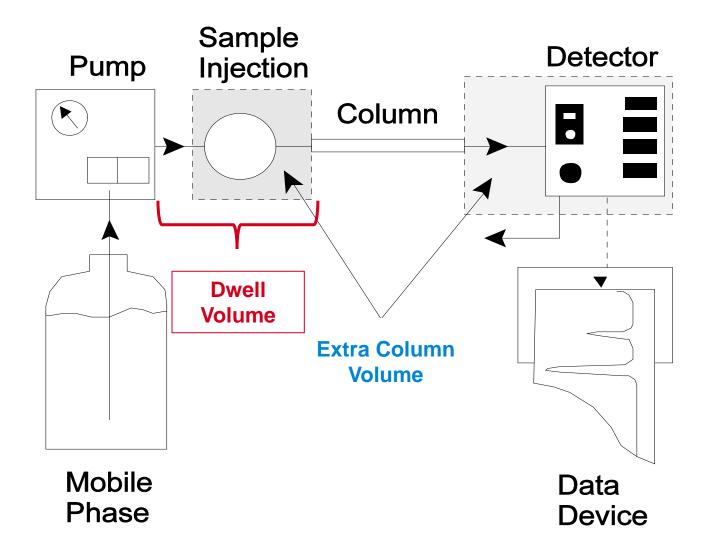


What Data Rate Should I Choose?

InfinityLab Poroshell 120 EC-C18, 2.1 \times 50 mm, 1.9 μm 20 mM sodium phosphate pH 7 in water with acetonitrile premixed 40/60 0.5 mL/min



Fast data collection rates must be used with Agilent InfinityLab Poroshell 1.9 μ m columns to accurately measure the efficiency of the column, especially for early eluting compounds such as butylparaben (k' = 1.3).


DAD Setting – Choose the Right Sampling Rate

Reference: 360 nm, bandwidth: 100 nm

Instrument Configuration

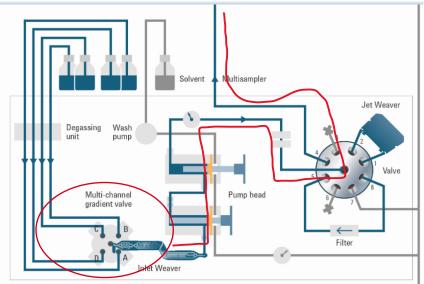
Dwell Volume: from formation of gradient to top of column

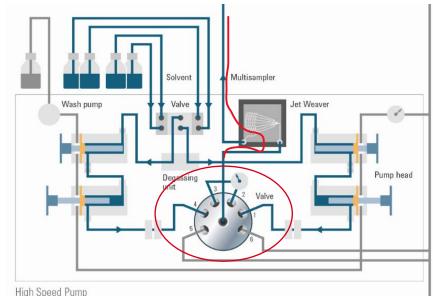
-minimize for faster equilibration and more efficient gradient formation

Extra column volume from injection to detector (flow cell) outside of the column

Minimize to reduce band broadening, for sharper peaks and better resolution

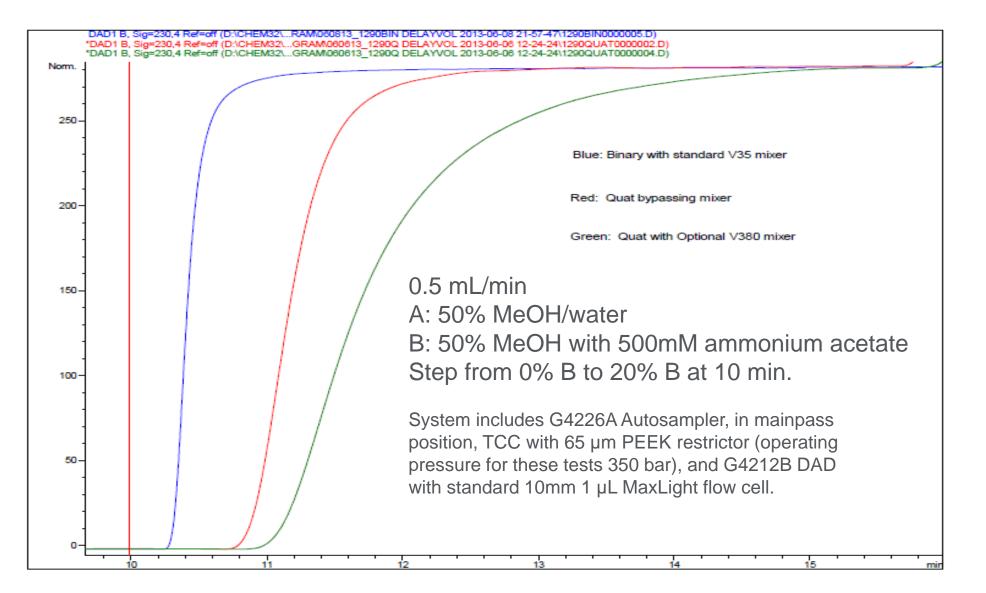
31

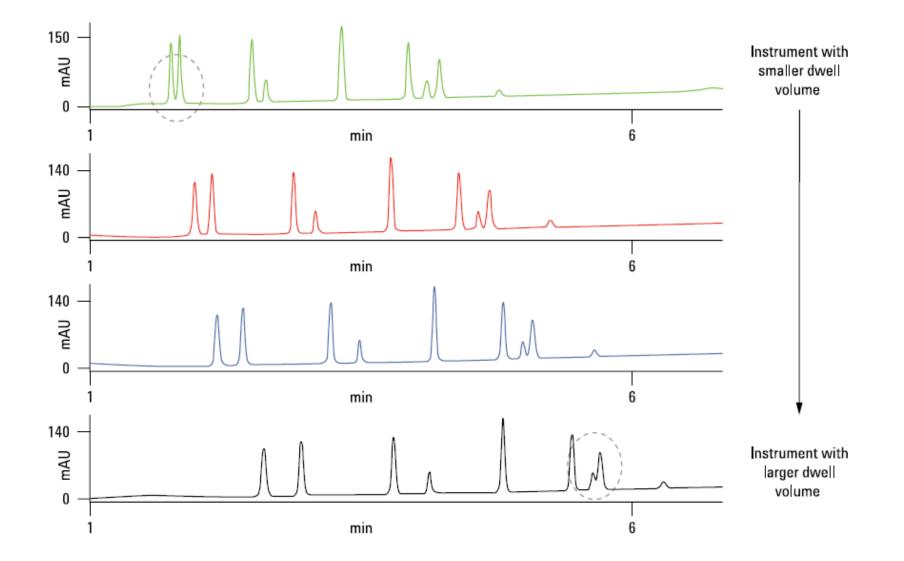

Comparison of Gradient Delay Volume (Dwell Volume)


1290 Infinity II Flexible Pump (Quaternary)

- Integrated degasser
- Four solvent channels with concurrent mixing of all four channels
- Lower in price, typically, than binary pump

1290 Infinity II High Speed Pump (Binary)


- Integrated degasser
- Four solvent channels available, mixing of two channels possible
- Better performance concept is widely accepted
- Greater control over dwell volume compared to Quaternary pump


Agilent

Delay Volume Profiles

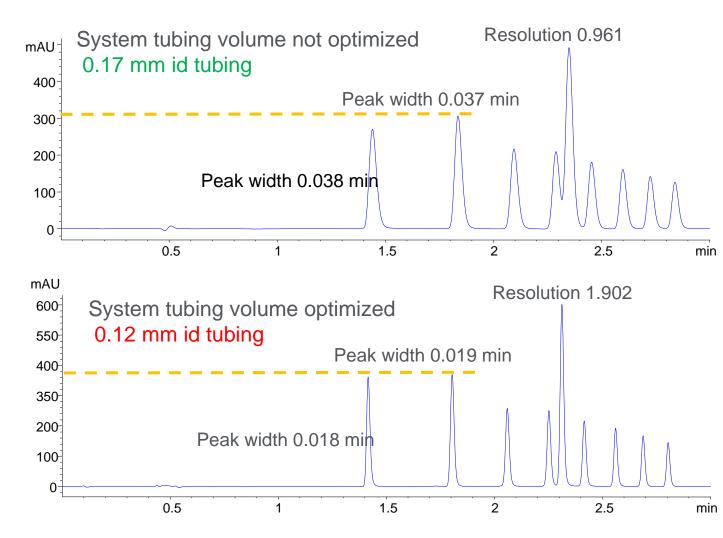
Chromatographic Test Results with Different Delay Volumes

Dispersion Reduces HPLC Performance

What is dispersion?

 Original sample concentration being diluted as it is carried through the system plumbing (extra column volume)

What increases dispersion?

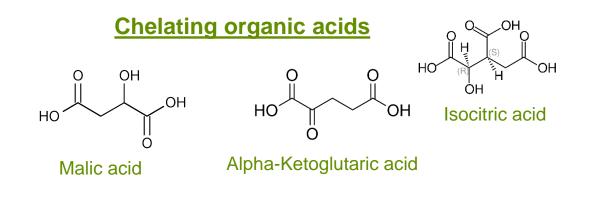

- Connecting tubing that is too long
- Connecting tubing that is too large in diameter
- Connections that have gaps and form small mixing chambers

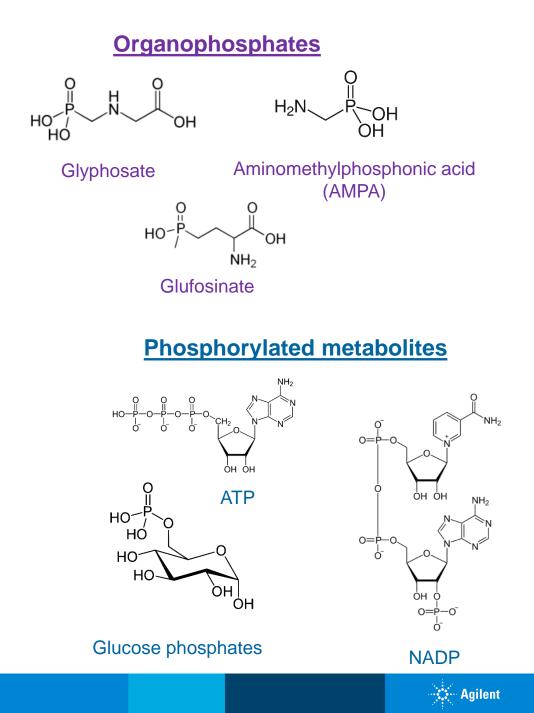
 $\sigma_{v,\text{ext}}^2 = \frac{\pi d^4 L_{cap}^{\ u}}{96D_m}$

$\sigma^2_{\rm v,ext}$	is the volume variance
d	is the tubing diameter
L	is the tubing length
u	is the linear velocity of the liquid
D _m	is the molecular diffusion coefficient

Optimizing Connecting Tubing Volume For UHPLC Columns

Length	10 mm	50 mm	100 mm	150 mm
Tubing id	Volume	Volume	Volume	Volume
0.17mm (green)	0.227 µL	1.1 µL	2.27 µL	3.3 µL
0.12 mm (red)	0.113 µL	0.55 µL	1.13 µL	1.65 µL





Passivation and Inert Hardware

- Steel has active sites that bind to certain classes of polar molecules
- Most active molecules:
 - Phosphorylated metabolites
 - Organophosphates and phosphonic acids
 - Di- and tricarboxylic acids and similar chelating acids
- Commonly seen in:
 - Pesticide analysis (glyphosate, AMPA, glufosinate)
 - Fermentation (citric acid cycle, organic acids)
 - Metabolomics (nucleotides, sugar phosphates, citric acid cycle)

Eliminating Sticking with Wash Step and Deactivator Additive

Example analysis conditions

Column: InfinityLab Poroshell 120 HILIC-Z, 2.1 x 50 mm (p/n: 689775-924)

Temperature = 30 °C

Injection volume = 1 μ L

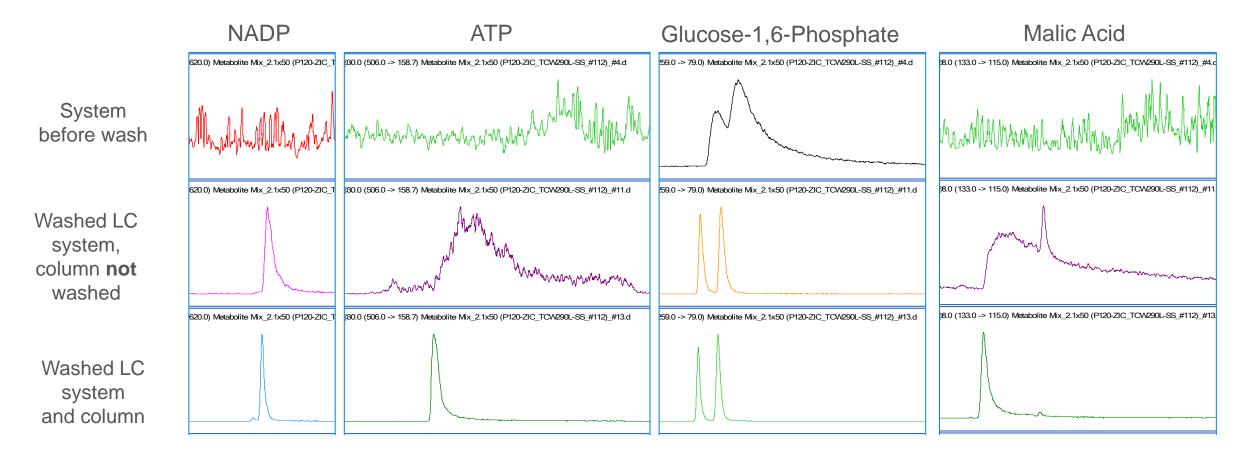
Flow rate = 0.25 mL/min

Mobile phase

A = 10 mM ammonium acetate in water at pH 9 + 5 μ M deactivator additive

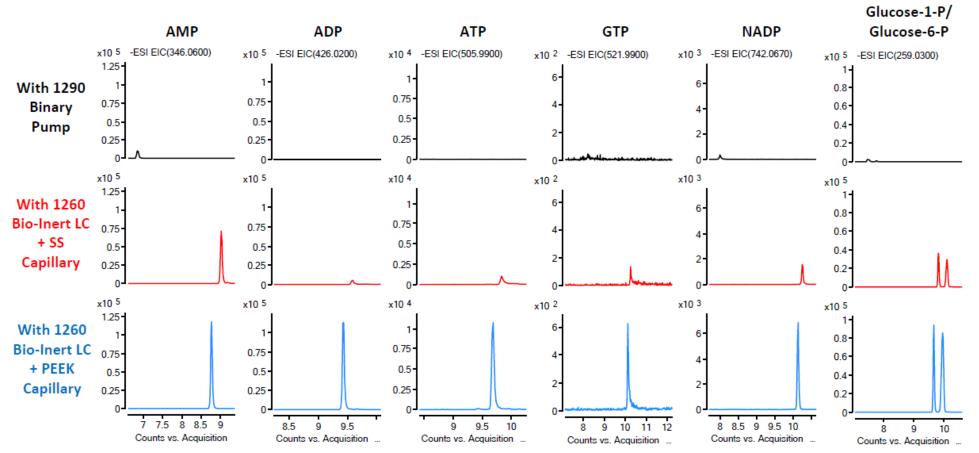
B = 10% 100 mM ammonium acetate in water at pH 9 + 90% acetonitrile + 5 μ M deactivator additive

Total ionic strength – 10 mM for both mobile phases


Time (min)	Percentage A	Percentage B
0	10	90
2	10	90
12	40	60
13	10	90
21	10	90

Wash procedure

- 1. LC disconnected from MS and going directly to waste
- 2. IPA at 5 mL/min for 5 min
- 3. Water at 5 mL/min for 5 min
 - Flow at 0.5 mL/min for 1 hour
- 4. 0.5% phosphoric acid in 90% acetonitrile/10% water at 5 mL/min for 5 min
 - Flow at 0.1 mL/min overnight (at a minimum)
- 5. Water at 5 mL/min for 5 min
 - Flow at 0.5 mL/min for 1 hour
- 6. Mobile phase at 5 mL/min for 5 min
 - Flow at 0.25 mL/min for 1 hour
- 7. Reconnect LC to MS and proceed with analysis
 - Flow at 0.25 mL/min for 20 to 30 min


Improvements in Signal and Peak Shape

HILIC/MS Sensitivity with Bio-Inert LC

Nucleotide phosphates on a PEEK-lined Agilent InfinityLab Poroshell 120 HILIC-Z

Column used was Agilent InfinityLab Poroshell 120 HILIC-Z, 2.1 x 100 mm, 2.7 µm (PEEK-lined stainless steel); A: 10 mM ammonium formate pH 6.8 in water, B: acetonitrile + 10 mM ammonium formate pH 6.8, 95-30% B in 10 minutes, 0.25 mL/min, 0.2 µL injection (5 ng each on column), MS source: ESI, m/z 191.02, 346.06, 426.02, 505.99, 521.99, 742.067, 743.067, 259.03

Agilent InfinityLab

InfinityLab columns

vgilent InfinityLab Poroshell 120 Designed to seamlessly integrate into the InfinityLab family

You can rely on **Agilent InfinityLab** LC instruments, columns, and supplies to deliver rugged quality and robust analytical results.

www.agilent.com/chem/InfinityLab

Agilent InfinityLab Poroshell 120

Agilent Resources for Support

- Resource page http://www.agilent.com/chem/agilentresources
 - Quick reference guides, product catalogs
 - Online selection tools, "How-to" videos
 - Column user guides <u>https://www.agilent.com/en-us/support/liquid-</u> <u>chromatography/kb005965</u>
 - Biocolumn user guides <u>https://www.agilent.com/en/support/liquid-</u> <u>chromatography/kb005960</u>
- Tech support: <u>http://www.agilent.com/chem/techsupport</u>
- InfinityLab LC Supplies catalog (<u>5991-8031EN</u>)
- Agilent University http://www.agilent.com/crosslab/university
- YouTube <u>Agilent Channel</u>
- Your local product specialists
- Subscribe to Agilent Peak Tales podcasts at peaktales.libsyn.com

Contact Agilent Chemistries and Supplies Technical Support

Available in the USA and Canada 8-5 all time zones

1-800-227-9770 option 3, option 3:
Option 1 for GC and GC/MS columns and supplies
Option 2 for LC and LC/MS columns and supplies
Option 3 for sample preparation, filtration and QuEChERS
Option 4 for spectroscopy supplies
Option 5 for chemical standards

gc-column-support@agilent.com lc-column-support@agilent.com spp-support@agilent.com spectro-supplies-support@agilent.com chem-standards-support@agilent.com

