

Workflows for N-Glycan Analysis of Biotherapeutics Using LC/FLD/MS

John Yan, Ph.D. Applications Chemist

Agilent LC and LC/MS Chemistries and Supplies Webinar Series Tuesday, April 21st 2020

04/21/2020 For Research Use Only. Not for use in diagnostic procedures.

Outline

Importance of N-glycan analysis for biotherapeutic development

Choosing a dye for released N-glycan analysis

- InstantPC for HILIC (rapid, high FLD and MS signal)
- 2-AB for HILIC (well-established)
- APTS for CE

HILIC separations of labeled N-glycans

FLD and MS detection

Sialic acid quantitation workflow for biotherapeutics

Total sialic acid quantitation (plate based)

N-Glycans on Biotherapeutics

1/5th of all proteins in SwissProt are glycoproteins

More than 60% of biotherapeutics are glycosylated

N-Glycan structure can affect pharmacokinetics, pharmacodynamics, and immunogenicity

Glycosylation can be a critical quality attribute (CQA)

Even if not a CQA, glycosylation still monitored as a product quality attribute

Monoclonal antibody (mAb) and antibody-derived biotherapeutic proteins are glycosylated

Other molecules including blood factors (EPO, Factor VIII) also glycosylated

Khoury, et al., *Nat. Sci. Rep.* 1 (90), doi:10.1038/srep00090 (2011) Planinc et al., *Anal. Chim. Acta* 921, 13–27 (2016) Walsh, *Nat. Biotechnol.* 32(10), 992–1000 (2014) Liu, *J. Pharm. Sci.* 104 (6), 1866–1884 (2015)

Top Selling Pharmaceuticals (2010)

	Trade name	Туре	Main Indications	Company	Sales (USD millions/year)	
1	Lipitor	Small molecule	Hypercholesterolemia, Dyslipidemia	Pfizer Inc.	7,244	
2	Nexium	Small molecule	Symptomatic Gastroesophageal Reflux Disease	AstraZeneca Pharmaceuticals LP	6,309	
3	Plavix	Small molecule	Reduction of atherosclerotic events	Bristol-Myers Squibb Company	6,129	Glycosylated
4	Advair Diskus	Small molecule	Chronic obstructive pulmonary disease	GlaxoSmithKline	4,711	
5	Abilify	Small molecule	Bipolar Mania	Bristol-Myers Squibb Company	4,551	
6	Seroquel	Small molecule	Bipolar Depression	AstraZeneca Pharmaceuticals LP	4,349	
7	Singulair	Small molecule	Asthma	Merck & Co., Inc.	4,072	
8	Crestor	Small molecule	Hypercholesterolemia, dyslipidemia	AstraZeneca Pharmaceuticals LP	3,758	
9	Actos	Small molecule	Type 2 diabetes	Takeda	3,534	
10	Epogen	Biologic	Anemia	Amgen	3,323	

• Only 1 glycosylated molecule in 2010 Top 10

*IMS Institute for Healthcare Informatics. The use of medicines in the United States: review of 2010.

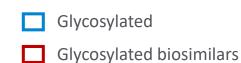
Top Selling Pharmaceuticals (2018)

Rank	Drug	Trade names	Туре	Main indications	Company	Sales (USD billions/year)
1	adalimumab	Humira	Biologic	Autoimmune	AbbVie	19.936
2	apixaban	Eliquis	Small molecule	Anticoagulation	Bristol-Myers Squibb/Pfizer	9.872
3	lenalidomide	Revlimid	Small molecule	MDS, multiple myeloma, MCL	Celgene	9.685
4	nivolumab	Opdivo	Biologic	Cancer (anti-PD-1 immunotherapy	Bristol-Myers Squibb/Ono Pharmaceutical	7.570
5	pembrolizumab	Keytruda	Biologic	Cancer (anti-PD-1 immunotherapy)	Merck & Co.	7.171
6	etanercept	Enbrel	Biologic	Autoimmune including RA	Amgen/Pfizer	7.126
7	trastuzumab	Herceptin	Biologic	Breast cancer	Roche (Genentech)	6.981
8	bevacizumab	Avastin	Biologic	Cancer types, AMD	Roche (Genentech)	6.847
9	rituximab	Rituxan, MabThera	Biologic	Autoimmune, cancer types	Roche (Genentech)/Biogen	6.750
10	rivaroxaban	Xarelto	Small molecule	Anticoagulation	Bayer/J&J	6.589

Glycosylated

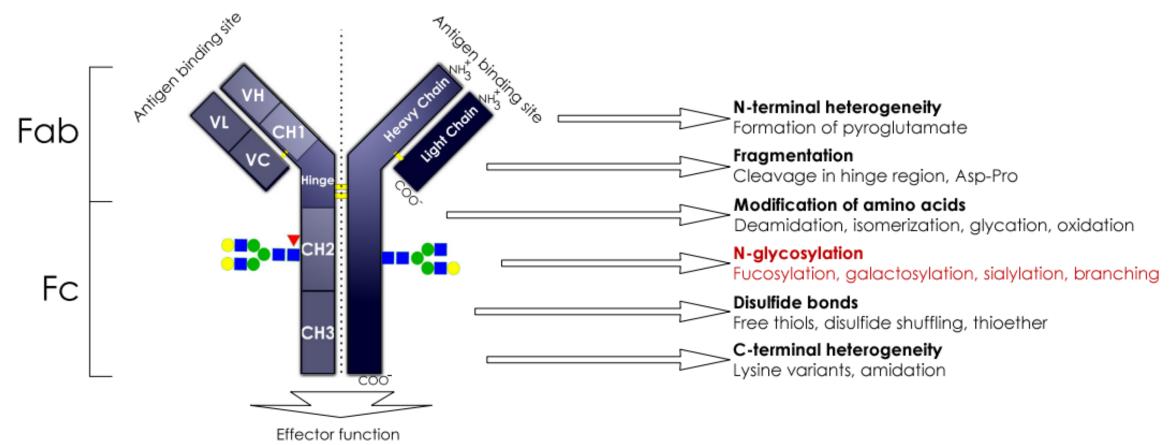
• 7/10 glycosylated biotherapeutics

Top-selling drugs are ranked based on sales or revenue reported for 2018 by bio/pharma companies in press announcements, annual reports, investor materials, and/or conference calls.


https://www.genengnews.com/a-lists/top-15-best-selling-drugs-of-2018/

Top Selling Biopharmaceutical Products (2017)

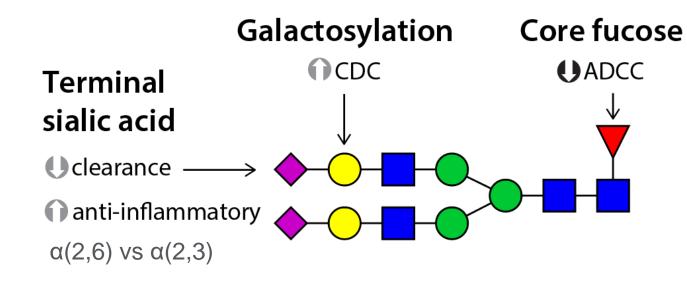
Rank	Product	Sales, 2017 (\$ billions) ^a	Cumulative sales, 2014–2017 (\$ billions)	Year first approved	Company	Patent expiry ^b	Biosimilar version(s) approved
1	Humira (adalimumab; anti-TNF)	18.94	62.6	2002	AbbVie, Eisai	2016 (US) 2018 (EU)	Halimatoz/Hefiya/Hyrimoz, Amgevita/Amjevita/Solymbic, Cyltezo, Imraldi
2	Enbrel (etanercept; anti-TNF)	8.34	35.4	1998	Amgen, Pfizer, Takeda Pharmaceuticals	2015 (EU) 2028 (US)	Erelzi, Benepali
3	Rituxan/MabThera (rituximab; anti-CD20)	7.78	29.1	1997	Roche, Biogen Idec	2013 (EU) 2016 (US)	Blitzima/Truxima, Ritemvia, Rituzena, Rixathon/Riximyo
4	Remicade (infliximab; anti-TNF)	7.77	35.6	1998	Johnson & Johnson, Merck, Mitsubishi Tanabe Pharma	2015 (EU) 2018 (US)	Zessly, Ixifi, Renflexis/Flixabi, Inflectra/ Remsima
5	Herceptin (trastu- zumab; anti-HER2)	7.39	27.1	1998	Roche	2014 (EU) 2019 (US)	Herzuma, Kanjinti, Trazimera, Ogivri, Ontruzant
6	Avastin (bevaci- zumab; anti-VEGF)	7.04	27.0	2004	Roche	2017 (US) 2019 (EU)	Mvasi
7	Lantus (insulin glargine)	6.72	27.4	2000	Sanofi	2014 (EU & US)	Semglee, Lusduna, Abasaglar/Basaglar
8	Eylea (aflibercept; anti-VEGF)	5.93	18.0	2011	Regeneron, Bayer	2020 (EU) 2021 (US)	
9	Opdivo (nivolumab; anti-PD-1 receptor)	5.79	11.4	2014	Bristol-Myers Squibb, Ono Pharmaceutical	2027 (US) 2026 (EU)	
10	Neulasta (pegfilgrastim)	4.53	20.1	2002	Amgen, Kyowa Hakko Kirin	2014 (US) 2015 (EU)	Fulphila
11	Stelara (ustekinumab; anti-IL-12 & IL-23)	4.01	12.2	2009	Janssen Cilag (Johnson & Johnson)	2023 (US) 2024 (EU)	
12	Keytruda (pembroli- zumab, anti-PD-1)	3.81	5.7	2014	Merck	2036 (US) 2028 (EU)	
13	Prolia/Xgeva (deno- sumab, anti-RANKL)	3.54	11.6	2010	Amgen	2025 (US) 2022 (EU)	
14	Lucentis (ranibi- 🔸 zumab; anti-VEGF)	3.38	14.3	2006	Roche, Novartis	2016 (EU & US)	
15	Novolog/Novorapid (insulin aspart)	3.31	11.7	1999	Novo Nordisk	2015 (EU & US)	



- 11 of the top 15: glycosylated
- Biopharmaceutical any drug manufactured in or extracted from biological sources
- Biosimilar drug that is a copy of an original or innovator biopharmaceutical
- As patent expiry approaches, biopharma companies will focus on production of potential biosimilars
- Lucentis (ranibizumab) is a Fab fragment made in E. coli, not glycosylated

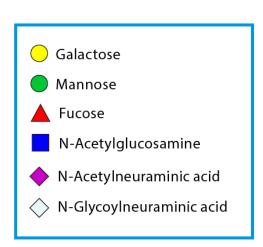
Walsh G, Nat Biotechnol. 2018 Dec 6;36(12):1136-1145

Fc N-Linked Glycosylation at N297

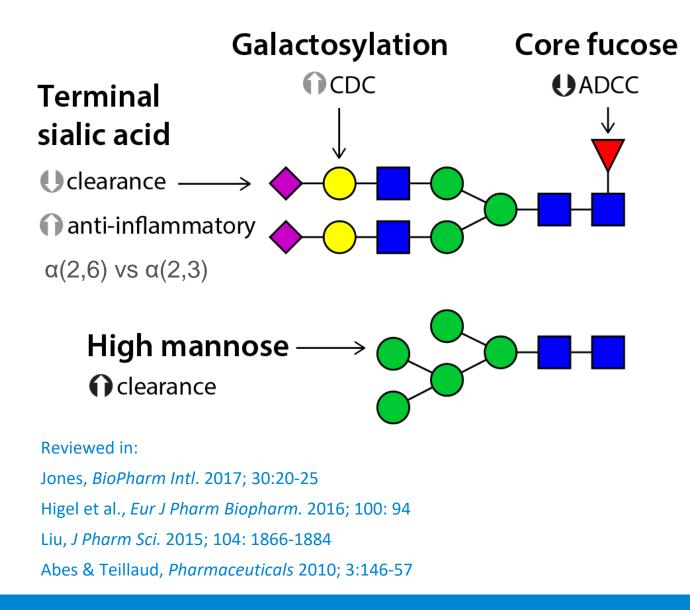


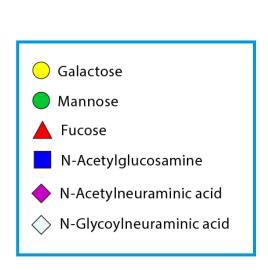
Fc-receptor & Complement interactions

Higel et al., Eur J Pharm Biopharm. 2016; 100: 94



Effect of N-Glycan Structure on Biotherapeutics

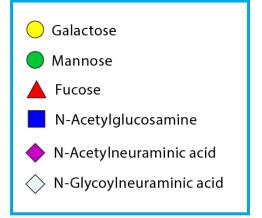

- ADCC: Antibody-Dependent Cell-mediated Cytotoxicity
- CDC: Complement-Dependent Cytotoxicity


Reviewed in: Jones, *BioPharm Intl*. 2017; 30:20-25 Higel et al., *Eur J Pharm Biopharm*. 2016; 100: 94 Liu, *J Pharm Sci*. 2015; 104: 1866-1884 Abes & Teillaud, *Pharmaceuticals* 2010; 3:146-57

Effect of N-Glycan Structure on Biotherapeutics

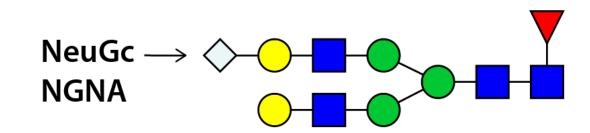
Non-Human/Immunoreactive N-Glycans

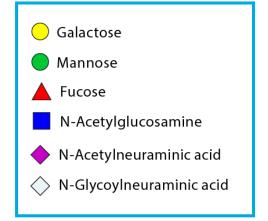
Gal- α -1,3-Gal \longrightarrow (α-Gal, Galili antigen)


Cetuximab - N-glycans with α -Gal on Fab region

Associated with adverse immunological responses

Abatacept - N-glycans with α -Gal on Fc region

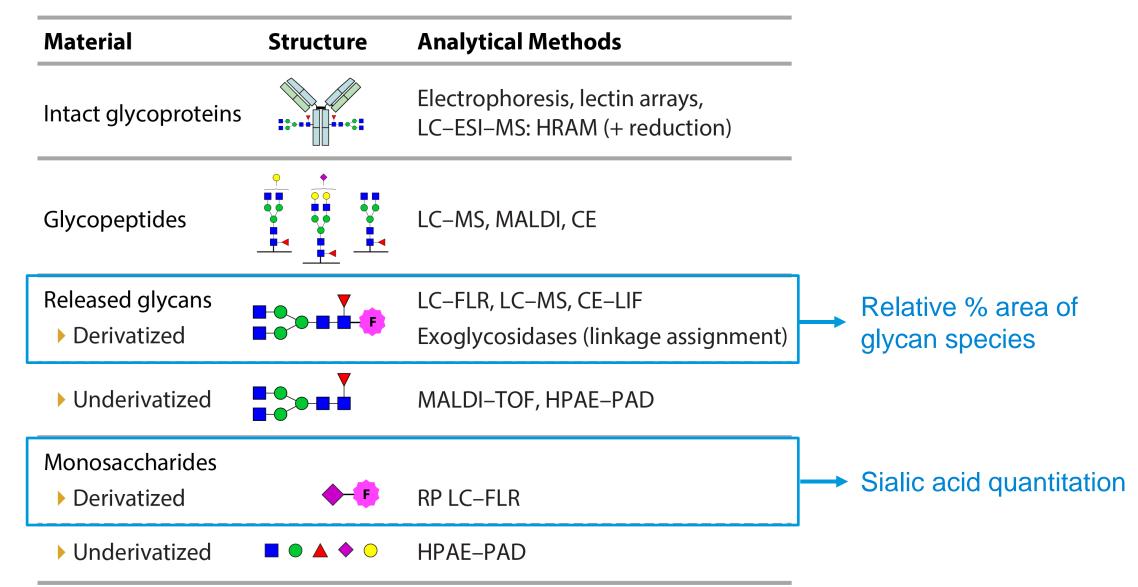

No reported adverse effects


Macher & Galili, *Biochim Biophys Acta*. 2010; 1780 (2): 75-88 Van Bueren et al., *Nat Biotechnol*. 2011; 29: 574-576 Bosques et al., *Biotechnol*. 2010; 28: 1153-1156 Chung et al., *N Eng J Med*. 2008; 358(11): 1109-1117

Non-Human/Immunoreactive N-Glycans

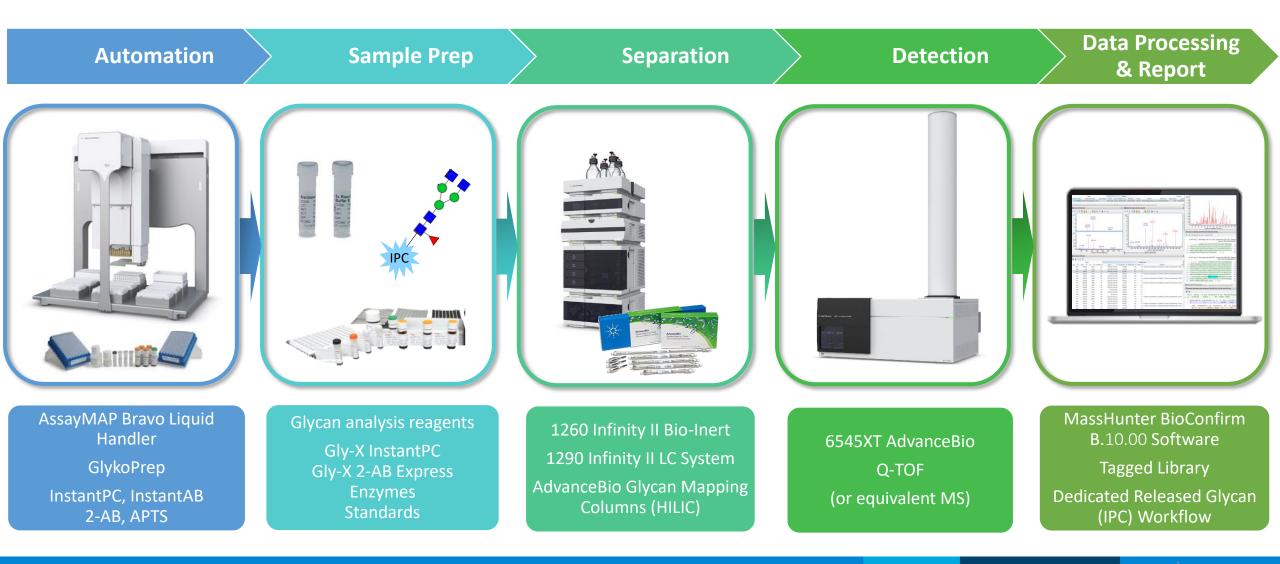
Potentially immunogenic

Ghaderi et al., Biotechnol Genet Eng Rev. 2012; 28:147-75

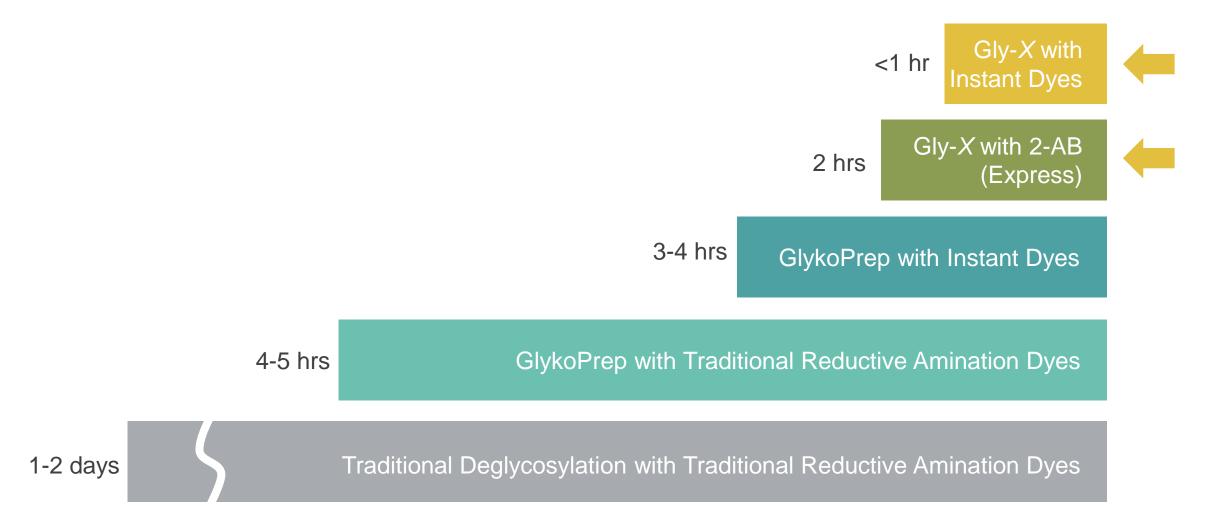

N-Glycan Analysis Options

Material	Structure	Analytical Methods
Intact glycoproteins		Electrophoresis, lectin arrays, LC–ESI–MS: HRAM (+ reduction)
Glycopeptides		LC–MS, MALDI, CE
Released glycans Derivatized 		LC–FLR, LC–MS, CE–LIF Exoglycosidases (linkage assignment)
Underivatized		MALDI–TOF, HPAE–PAD
Monosaccharides Derivatized 	♦ - F	RP LC-FLR
Underivatized		HPAE–PAD

Jones, BioPharm Intl. 2017; 30:20-25

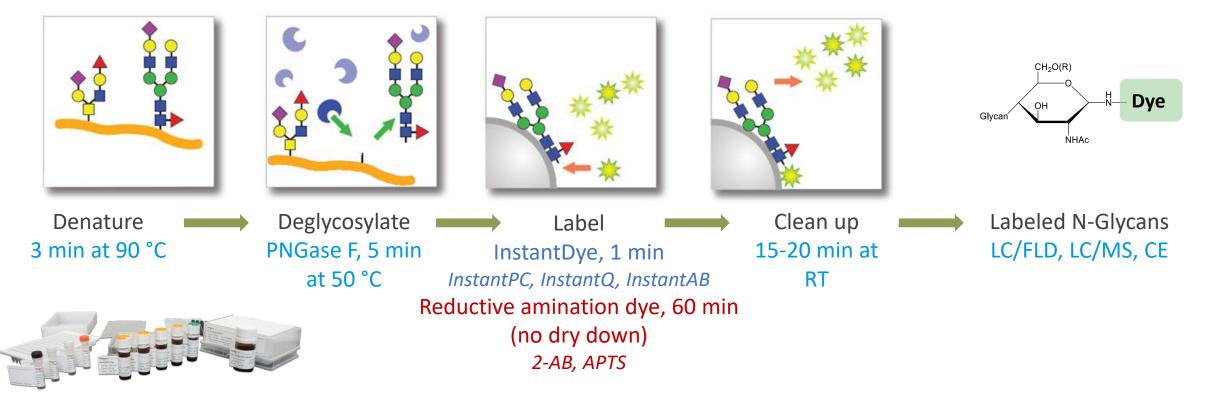


N-Glycan Analysis Options



Agilent Released N-Glycan Workflow

N-Glycan Sample Prep Evolution

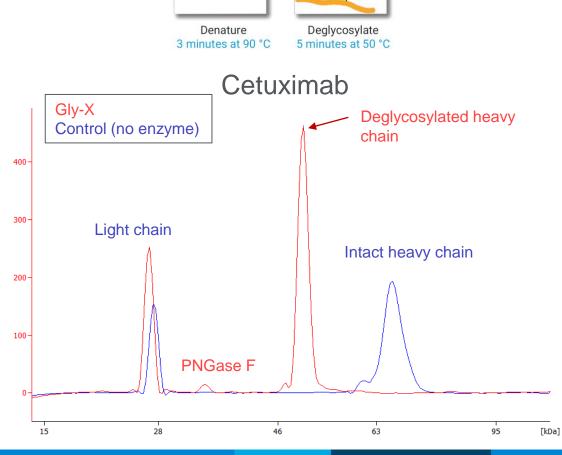


Gly-XN-Glycan Sample Prep Technology

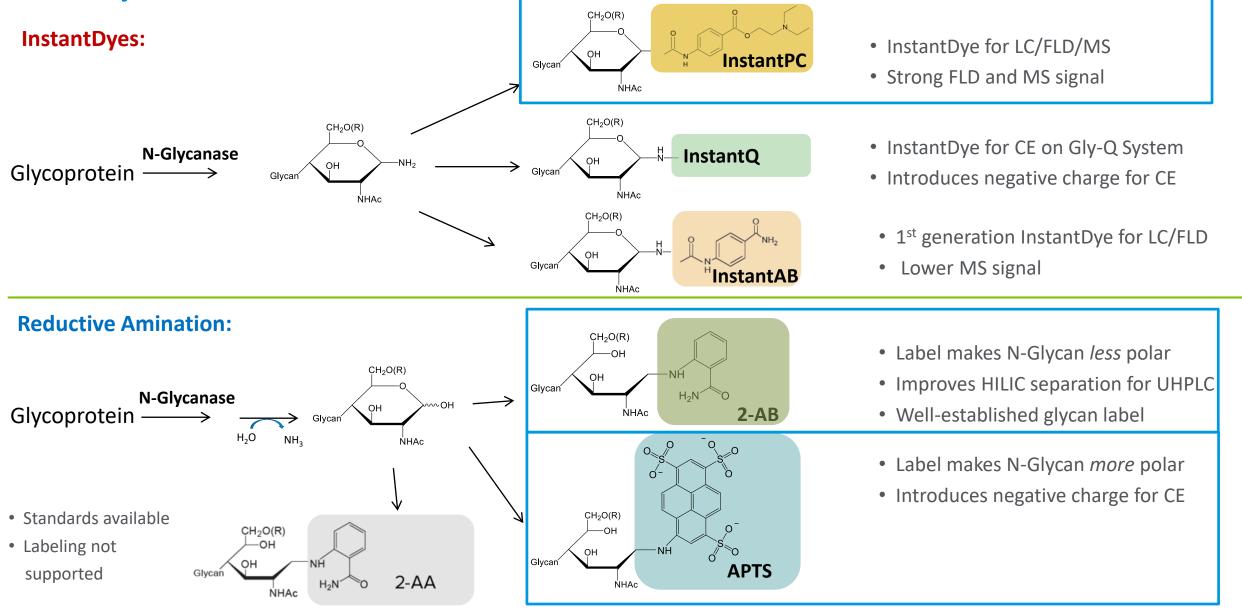
1-40 µg glycoprotein sample*, 0.05-2 mg/ml

Workflow time: 45 min – 120min (16 samples)

*Loading range depends on protein, can go up to 100 μ g for mAbs e.g. Rituxan

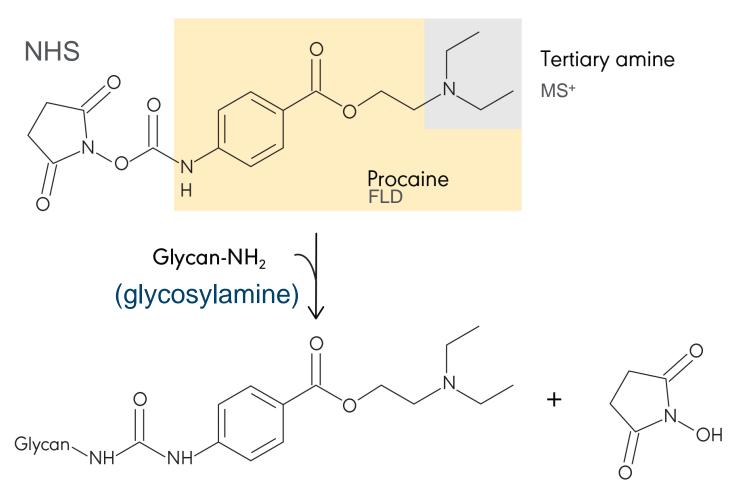

Novel In-Solution Enzymatic Protein Denaturation & Deglycosylation

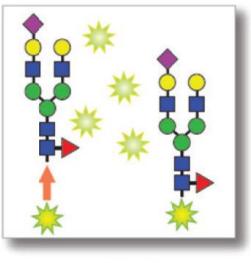
Gly-X in-solution 5-minute deglycosylation with PNGase F achieves > 99% N-glycan release for most proteins tested


Protein	% Deglycosylation
Rituximab	>99%
Cetuximab	>99%
Enbrel	>99%
Zaltrap	>99%

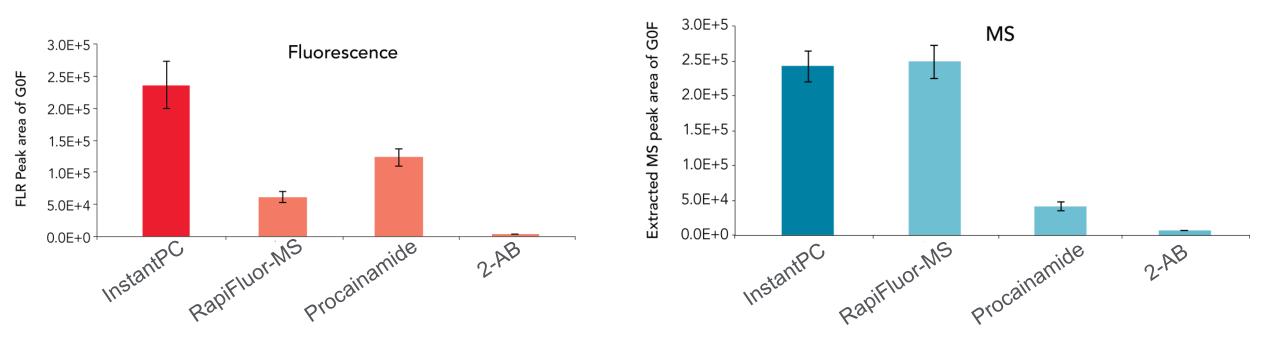
Analytical Method:

Agilent 2100 Bioanalyzer, Protein 230 Kit (electropherograms not normalized)




N-Glycan Label Choices

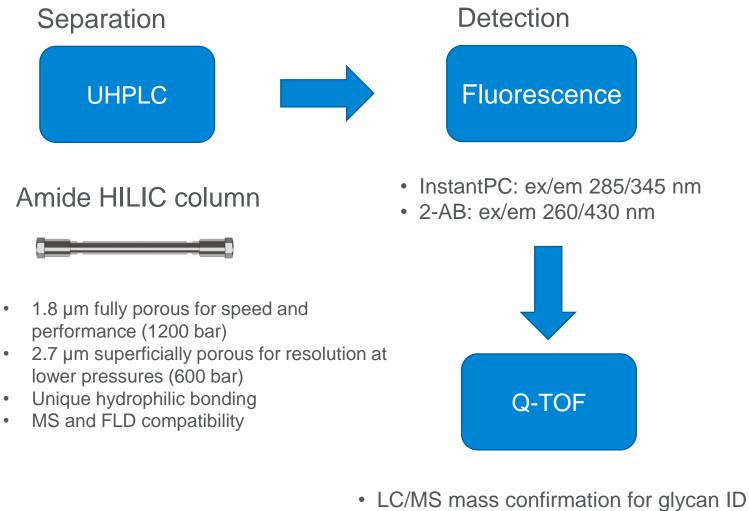
InstantPC Dye (IPC)



Label 1 minute at 50 °C

Workflow time: 45 min (16 samples), 100 min (96 samples)

FLD and MS Response Comparison



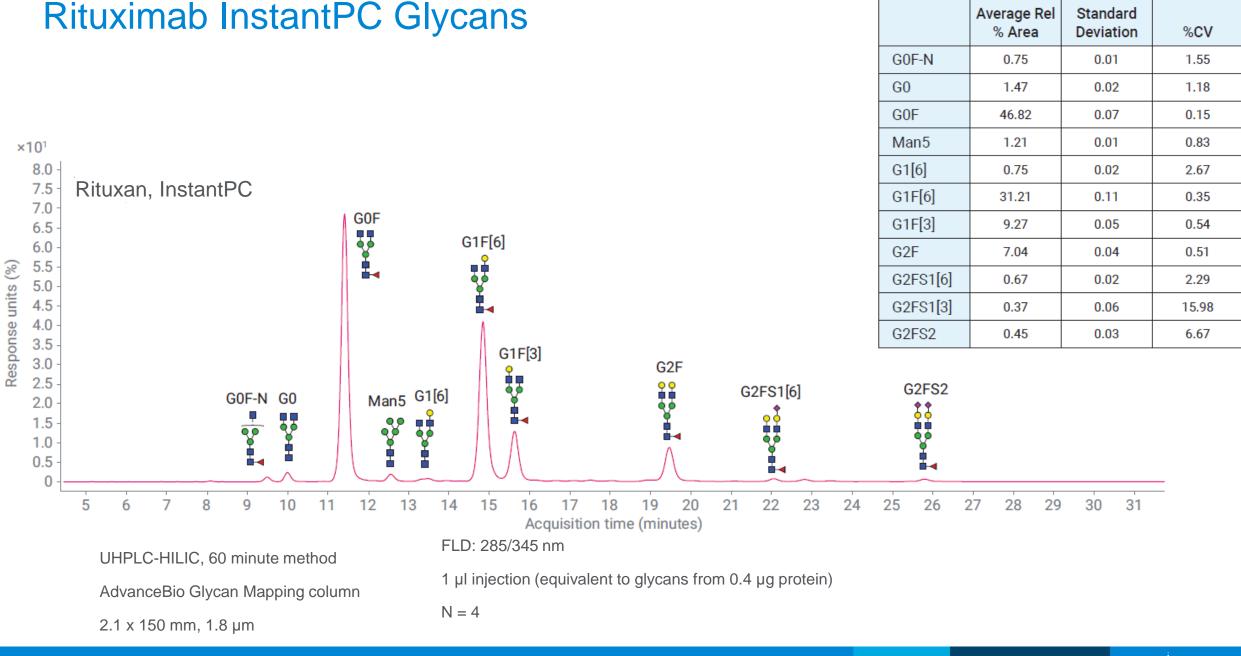
Labeling uses same amount of released glycans from GlykoPrep digestion

Reference: ProZyme Poster Presentation at ASMS, St. Louis, MO, May 31 - June 4, 2015

UHPLC-HILIC Separation of Labeled N-Glycans

Positive mode

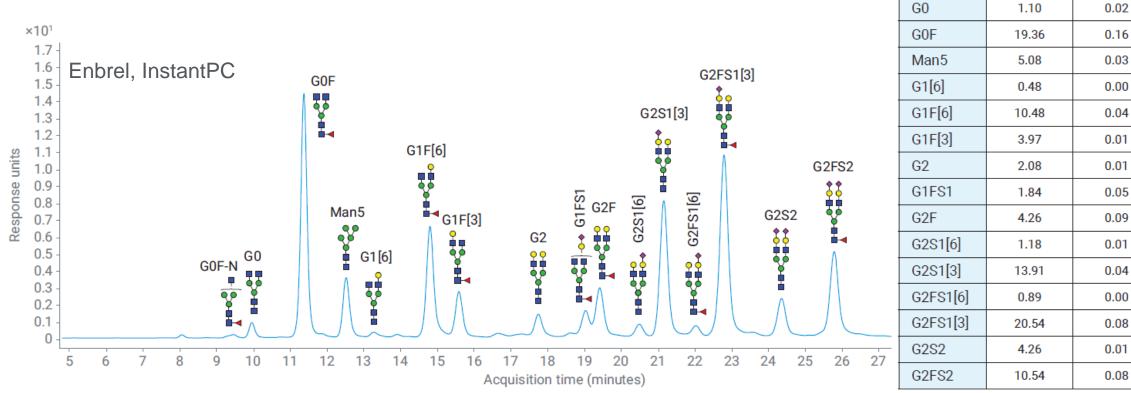
HILIC: hydrophilic interaction liquid chromatography Example Method: 1 hour

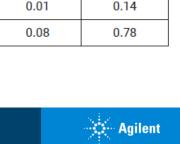

Time (min)	%A	%В	Flow (ml/min)
0.00	20.0	80.0	0.50
2.00	25.0	75.0	0.50
48.00	38.0	62.0	0.50
49.00	60.0	40.0	0.50
51.50	60.0	40.0	0.50
52.00	18.0	82.0	0.50
60.00	18.0	82.0	0.50

AdvanceBio Glycan Mapping Column 2.1 x 150 mm, 1.8 μm

A: 50 mM ammonium formate, pH 4.5 B: Acetonitrile

Column temperature: 40 °C




22

04/21/2020

Etanercept InstantPC N-glycans

- Etanercept: Fc fusion protein
- Tumor necrosis factor receptor (TNFR) fused to Fc of IgG1
- 3 N-glycan sites: 1 in Fc, 2 in receptor
- N = 4

Average Rel

% Area

Standard

Deviation

%CV

2.09

0.84

0.52

0.00

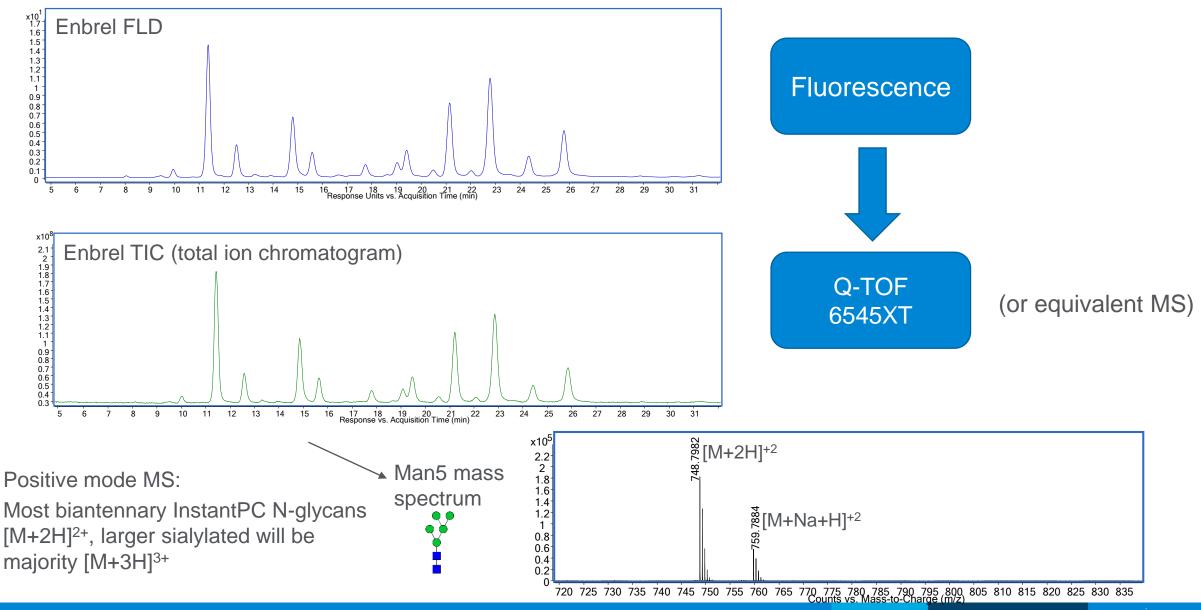
0.39

0.25

0.55

2.49

1.99


0.49

0.31

0.00

0.37

MS of InstantPC N-Glycans from Enbrel

04/21/2020

InstantPC N-Glycan Standards & Libraries

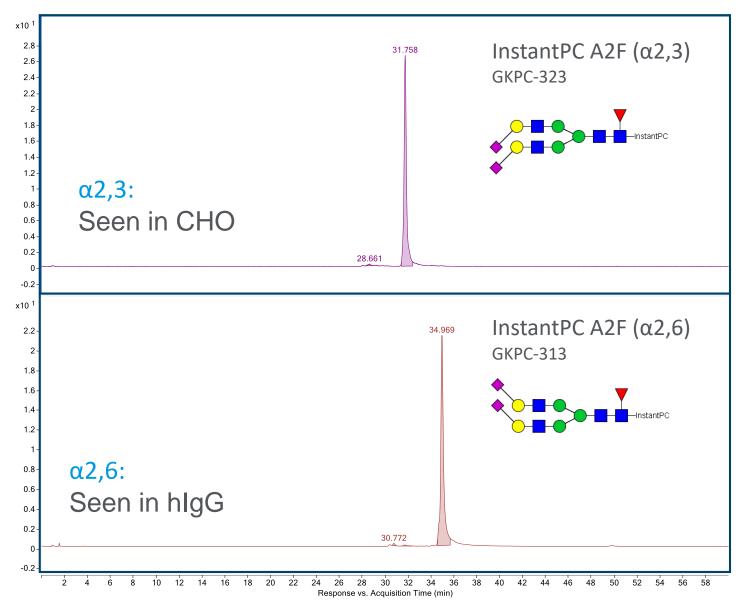
Individual N-Glycans

_			<i>.</i>				
	Product Code	e Description			Product Code	Description	
	GKPC-401	GO-N			GKPC-311	A1 (a2,6)	+{ <mark>0-00</mark>
	GKPC-301	G0			GKPC-325	A1F (a2,3)	+ 00000
	GKPC-402	GOF-N			GKPC-315	A1F (a2,6)	+ 000 000
	GKPC-302	GOF			GKPC-322	A2 (a2,3)	+0-00
	GKPC-317	G1	0-{ 0 -0-0-0-0		GKPC-312	A2 (a2,6)	+00
	GKPC-316	G1F	0-		GKPC-323	A2F (a2,3)	******
	GKPC-304	G2	000000		GKPC-313	A2F (a2,6)	+00
	GKPC-305	G2F			GKPC-103	Man5	20000
	GKPC-329	G1S1 (a2,3)	+{		GKPC-104	Man6	20-8-8
	GKPC-319	G1S1 (a2,6)	◆ ○ { □○○■■		GKPC-105	Man7	• 000 • • • •
	GKPC-330	G1FS1 (a2,3)	+0-		GKPC-106	Man8	0-00 0-0-0-0-0
	GKPC-320	G1F <mark>S1</mark> (α2,6)	+		GKPC-107	Man9	000 mm
	GKPC-321	A1 (a2,3)	+				000
	New	Alpha Gal		-InstantPC		-instantPC	instantPC

N-Glycan Libraries

Product Code	Description	
GKPC-005	Human IgG N-Linked Glycan Library	
GKPC-503	Glucose Homopolymer	
GKPC-233	α(2-3) Sialylated Triantennary Library	
GKPC-263	α(2-6) Sialylated Triantennary Library	
GKPC-234	α(2-3) Sialylated Tetraantennary Library	
GKPC-264	α(2-6) Sialylated Tetraantennary Library	
New CHO mAb glycoprotein & N-glycan library		

Labeled Glycan Standards


2-AB, 2-AA, APTS, InstantPC, InstantAB, InstantQ

Learn more: www.agilent.com/chem/glycananalysis

Glycan Standards Flier 5994-0999EN

InstantPC Sialylated N-Glycan Standards

- **CHO glycoproteins**: α(2,**3**)-linked sialic acid [1]
- Human IgG: α(2,6)-linked sialic acid [2]
- α(2,3)-sialylated N-glycans have a shorter HILIC retention time than isomeric N-glycans with α(2,6) sialic acid linkages [3]

- 1. Lee EU et al., *J Biol Chem.* 1989;264(23):13848-55.
- 2. Anthony RM et al. *Science*. 2008;320(5874):373-6.
- 3. Raymond C et al., *mAbs.* 2015;7(3):571-83.

Additional Resources for InstantPC N-Glycan LC/FLD & MS Analysis

Streamlined Workflows for N-Glycan Analysis of Biotherapeutics Using InstantPC with LC/FLD/MS John Yan, Andres Guerrero, Ace G. Galermo, Ted Haxo, Sergey Vlasenko, Justin Hyche, Tom Rice and Aled Jones

ASMS 2019 poster ThP697

A Comprehensive Approach for Monoclonal Antibody N-linked Glycan Analysis from Sample Preparation to Data Analysis David Wong, Oscar Potter, Jordy Hsaio, Te-Wei Chu

Technical Note 5991-8550EN

Analysis of Monoclonal Antibody N-glycans by Fluorescence Detection and Robust Mass Selective Detection Using the Agilent LC/MSD XT Oscar Potter, Gregory Staples, Jordy Hsaio, Te-Wei Chu

Technical Note 5991-8071EN

Comparison of Relative Quantification of Monoclonal Antibody N-Glycans Using Fluorescence and MS Detection Oscar Potter and Greg Staples, Agilent Technologies

Technical Note 5991-6958EN

Comparison of Common Fluorescent Labels for LC/MS Analysis of Released N-Linked Glycans John Yan, Andres Guerrero, Steven Mast, Ted Haxo, Aled Jones

Technical Note 5994-0942EN

Automation of Gly-X N-Glycan Sample Prep with InstantPC and InstantQ Dyes

Loredana Serafini*, Ted Haxo†, Emily Dale†, Adele Taylor†, Katherine M. Brendza* (*Gilead, †ProZyme)

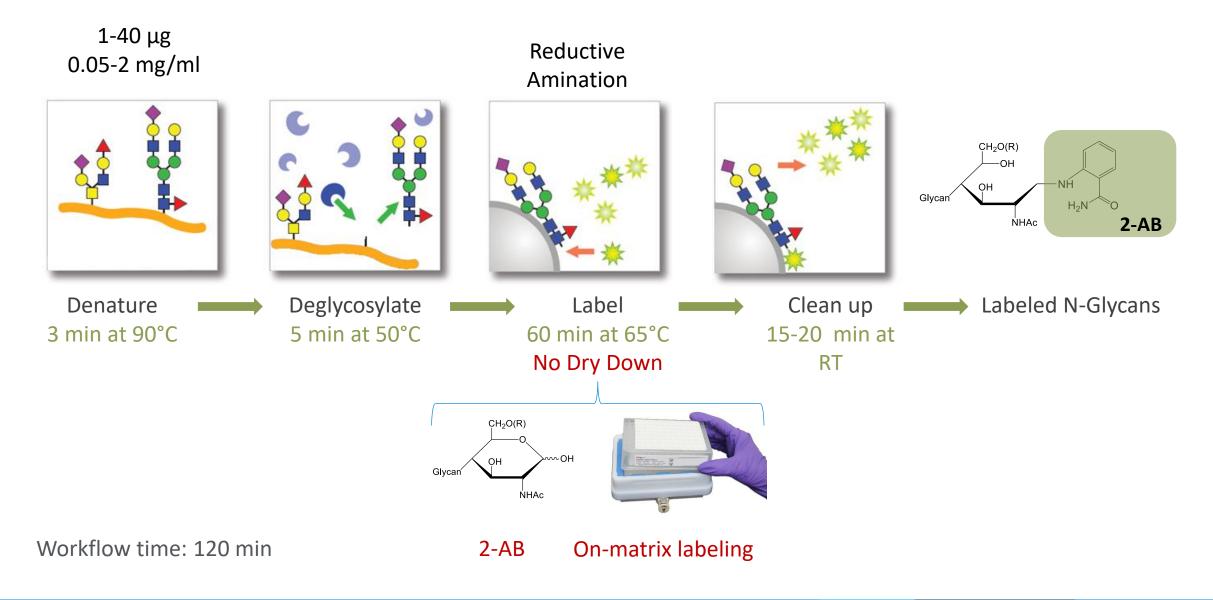
ProZyme Technical Note 4010

Development of an Instant Glycan Labeling Dye for High Throughput Analysis by Mass Spectrometry *Michael Kimzey, Zoltan Szabo, Vaishali Sharma, Alexander Gyenes, Samnang Tep, Adele Taylor, Aled Jones, Justin Hyche, Ted Haxo, Sergey Vlasenko*

ProZyme Technical Note 4003

2-AB Or Not 2-AB....

Label makes N-glycan less polar

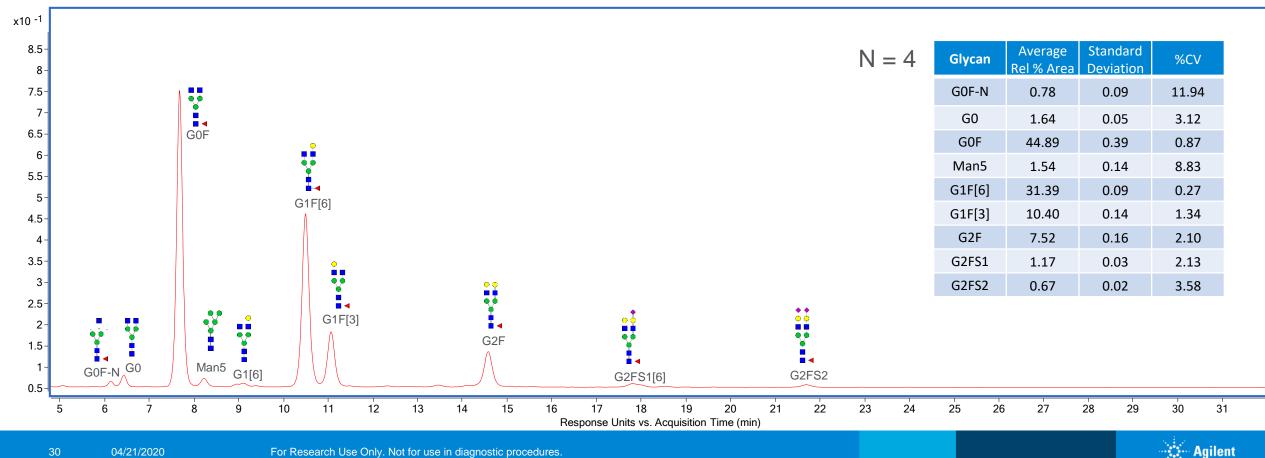

Traditionally used for HILIC separations of N-glycans with fluorescence detection

- Lower FLD and MS signal than InstantPC
- 2-AB (2-aminobenzamide) dye has been used to generate released N-glycan data for more than 20 years

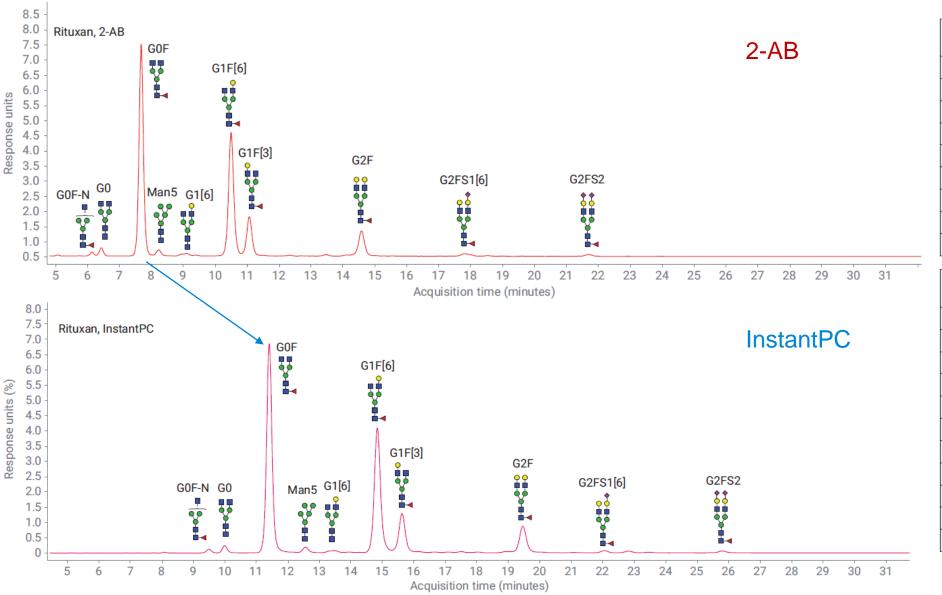
Well established in many laboratories

May need to match historic data using 2-AB

Gly-X 2-AB Express Workflow



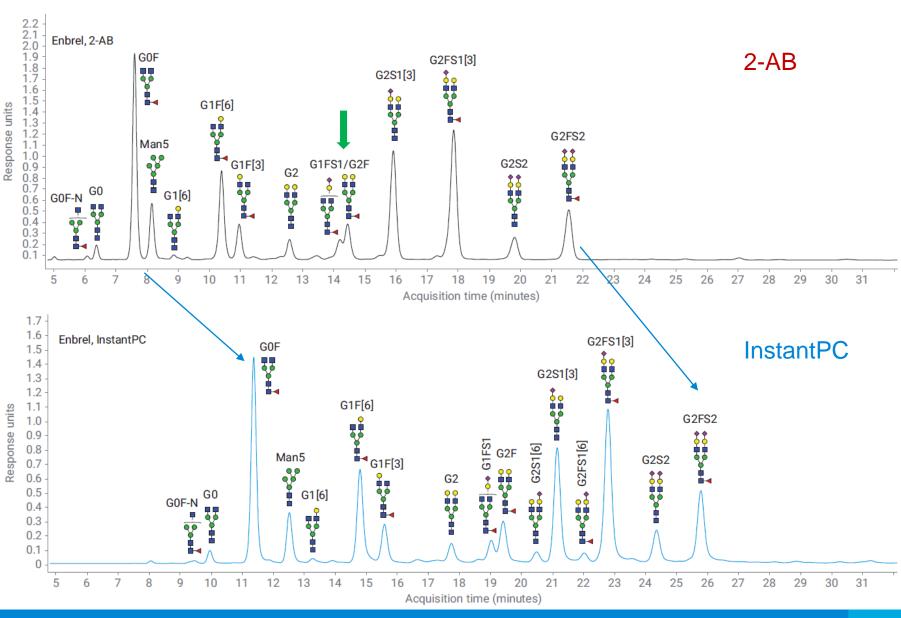
Rituximab Gly-X 2-AB Express N-Glycans


Analytical Method:

UHPLC-HILIC, 60 minute method, 1 µl injection (equivalent to glycans from 0.4 µg protein), FLD: 260/430 nm

AdvanceBio Glycan Mapping column, 2.1 x 150 mm, 1.8 µm

Gly-X 2-AB vs InstantPC - rituximab

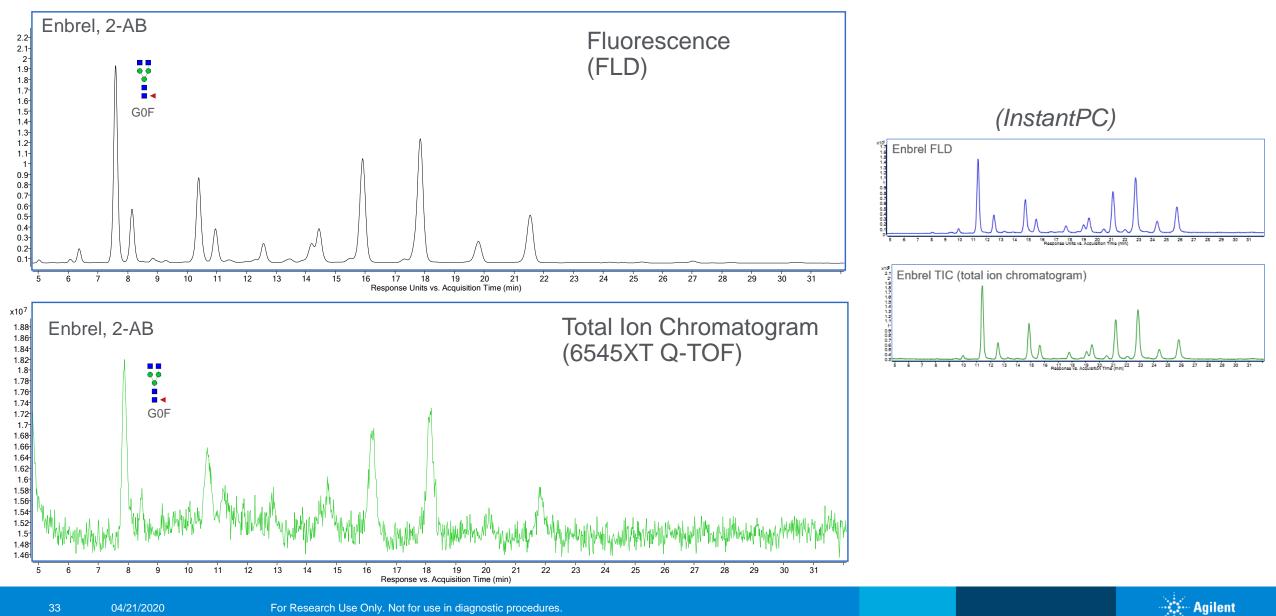

Average Rel Standard % Area %CV Deviation G0F-N 0.78 0.09 11.94 G0 1.64 0.05 3.12 GOF 44.89 0.39 0.87 Man5 1.54 0.14 8.83 G1F[6] 31.39 0.09 0.27 G1F[3] 10.40 0.14 1.34 G2F 7.52 0.16 2.10 G2FS1 1.17 0.03 2.13 G2FS2 0.67 0.02 3.58

N=4

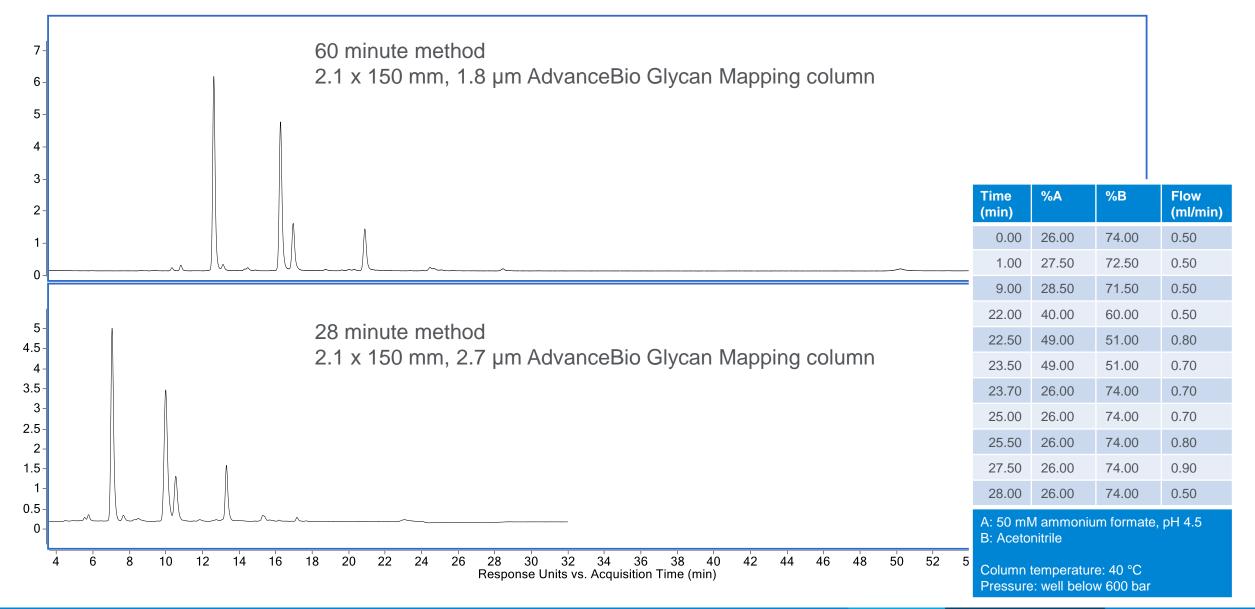
	Average Rel % Area	Standard Deviation	%CV
G0F-N	0.75	0.01	1.55
G0	1.47	0.02	1.18
G0F	46.82	0.07	0.15
Man5	1.21	0.01	0.83
G1[6]	0.75	0.02	2.67
G1F[6]	31.21	0.11	0.35
G1F[3]	9.27	0.05	0.54
G2F	7.04	0.04	0.51
G2FS1[6]	0.67	0.02	2.29
G2FS1[3]	0.37	0.06	15.98
G2FS2	0.45	0.03	6.67

×10⁻¹

Gly-X 2-AB vs InstantPC - etanercept


Average Rel Standard % Area Deviation %CV N=4G0F-N 7.44 0.32 0.02 G0 1.27 0.07 5.34 G0F 20.18 0.45 2.22 Man5 5.50 0.34 6.17 G1[6] 0.45 0.02 3.89 G1F[6] 10.35 0.33 3.18 G1F[3] 3.92 0.17 4.39 G2 2.21 0.15 6.78 G2F/G1FS1 7.00 0.25 3.63 G2S1 15.19 0.17 1.09 G2FS1 20.10 0.32 1.59 G2S2 4.19 0.25 5.95 G2SF2 9.35 0.74 7.93

	Average Rel % Area	Standard Deviation	%CV
G0	1.10	0.02	2.09
G0F	19.36	0.16	0.84
Man5	5.08	0.03	0.52
G1[6]	0.48	0.00	0.00
G1F[6]	10.48	0.04	0.39
G1F[3]	3.97	0.01	0.25
G2	2.08	0.01	0.55
G1FS1	1.84	0.05	2.49
G2F	4.26	0.09	1.99
G2S1[6]	1.18	0.01	0.49
G2S1[3]	13.91	0.04	0.31
G2FS1[6]	0.89	0.00	0.00
G2FS1[3]	20.54	0.08	0.37
G2S2	4.26	0.01	0.14
G2FS2	10.54	0.08	0.78


Agilent

04/21/2020

2-AB N-Glycans: MS

Column options for 2-AB N-glycans

2-AB N-Glycan Standards & Libraries

Description

G3

A3

G4

HYBR

NN

Man3

Man3F

Man5

Man6

Man7

Man8

Man9

3'-SLN

6'-SLN

GalGalNAc

NGA4

2

:--

)•••

<u>>--</u>

•

: 2....

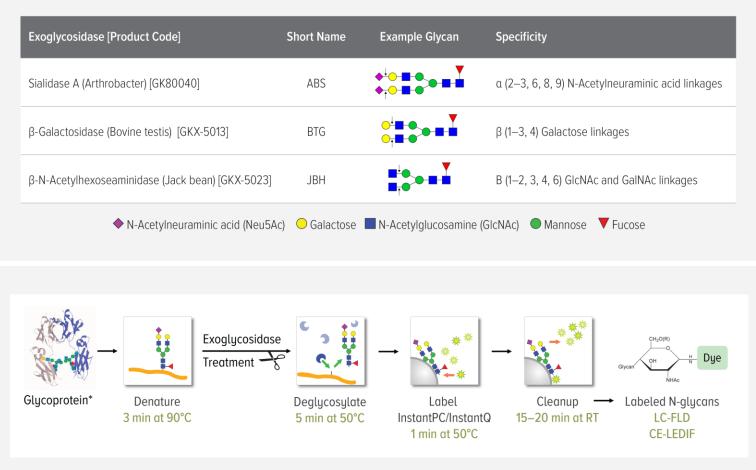
0-

♦ 0 ∎

۰.

Individual N-Glycans

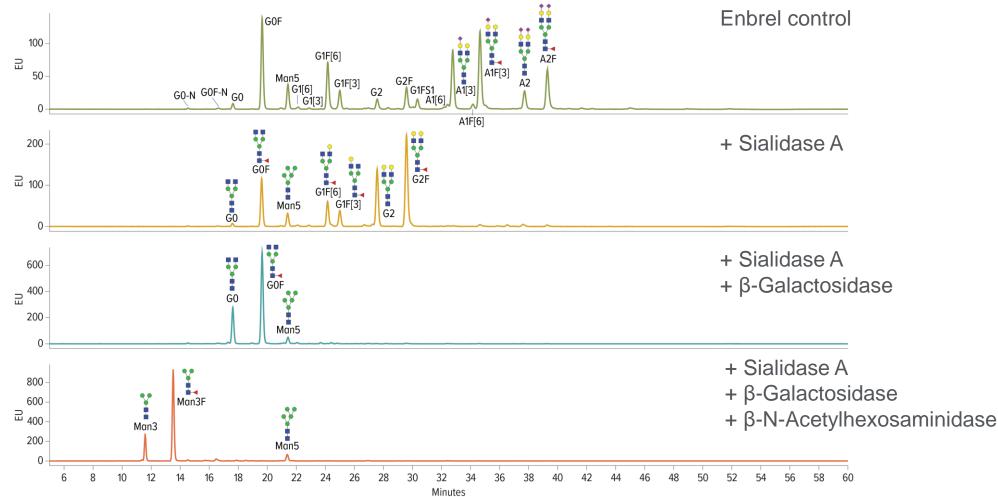
Product Code	Description	Product Code
GKSB-401	GO-N	GKSB-308
GKSB-301	GO	GKSB-314
GKSB-402	GOF-N	GKSB-309
GKSB-302	GOF	GKSB-310
GKSB-303	GOFB	GKSB-111
GKSB-317	G1 • •	GKSB-100
GKSB-316	G1F	GKSB-101
GKSB-304	G2	GKSB-102
GKSB-305	G2F	GKSB-103
GKSB-306	G2FB	GKSB-104
GKSB-318	NA2Ga2F	GKSB-105
GKSB-311	A1 +	GKSB-106
GKSB-315	A1F	GKSB-107
GKSB-312	A2	GKSB-201
GKSB-313	A2F	GKSB-203
GKSB-307	NGA3	GKSB-204


N-Glycan Libraries

Product Code	Description
GKSB-005	Human IgG N-Linked Glycan Library
GKSB-520	Biantennary & High Mannose Partitioned Library
GKSB-001	Human α1-acid Glycoprotein N-Linked Glycan Library
GKSB-002	Bovine Fetuin N-linked Glycan Library
GKSB-503	Glucose Homopolymer Standard
GKSB-232	α(2-3) Sialylated Biantennary Library
GKSB-262	α(2-6) Sialylated Biantennary Library
GKSB-233	α(2-3) Sialylated Triantennary Library
GKSB-263	α(2-6) Sialylated Triantennary Library
GKSB-234	α (2-3) Sialylated Tetraantennary Library
GKSB-264	α(2-6) Sialylated Tetraantennary Library

04/21/2020

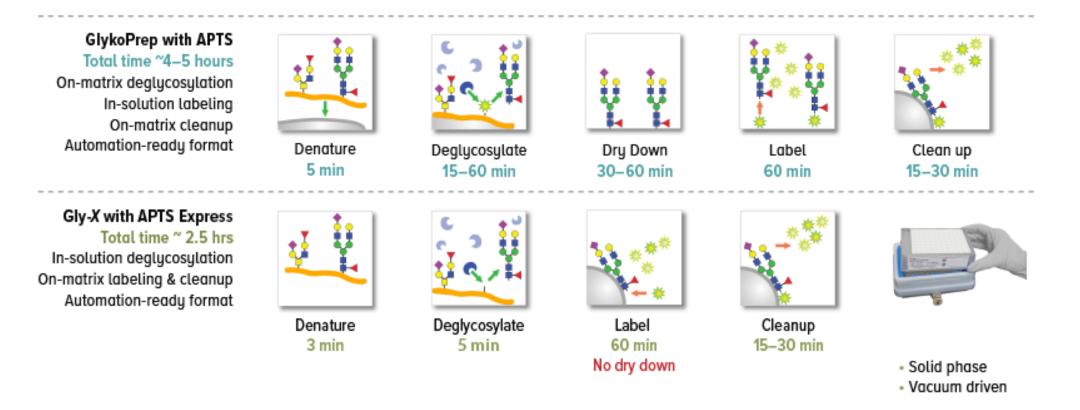
Exoglycosidase Confirmation of Structures


* Glycoprotein structure adopted from PDB entry DOI: 10.2210/pdb5VGP/pdb

PDB structure modified and image genrated with Lite Mol: https://webchemdev.ncbr.muni.cz/LiteMol/

An Intact Protein Approach to Exoglycosidase Sequencing Followed by Released N-Glycan Analysis from Biotherapeutic Glycoproteins (TN4013) Andres Guerrero, Anna Fong, John Yan, Tom Rice, Justin Hyche, Aled Jones

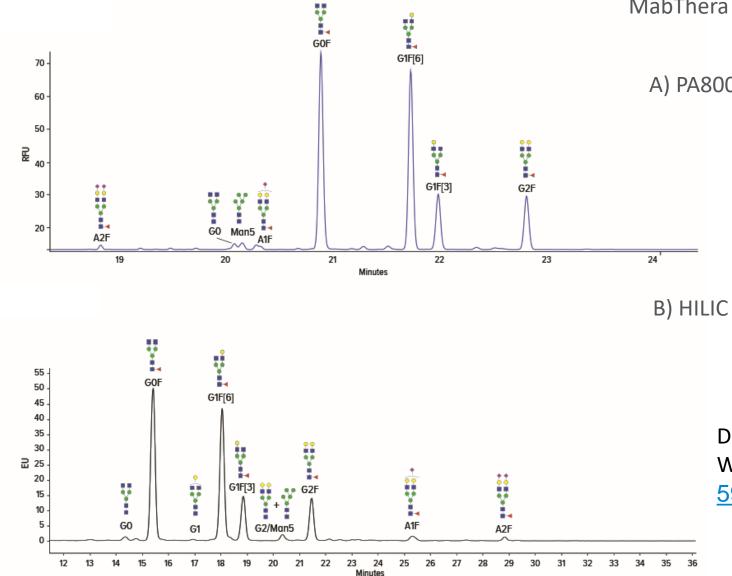
Exoglycosidase Confirmation of Structures: UHPLC-HILIC



An Intact Protein Approach to Exoglycosidase Sequencing Followed by Released N-Glycan Analysis from Biotherapeutic Glycoproteins (TN4013) Andres Guerrero, Anna Fong, John Yan, Tom Rice, Justin Hyche, Aled Jones

Gly-X APTS Express: sample prep for capillary electrophoresis (CE)

APTS N-Glycan Sample Prep Workflows



Development of a Rapid APTS Sample Preparation Workflow for N-Glycan Release and Labeling (5994-0994EN)

04/21/2020

Gly-X APTS Express: rituximab

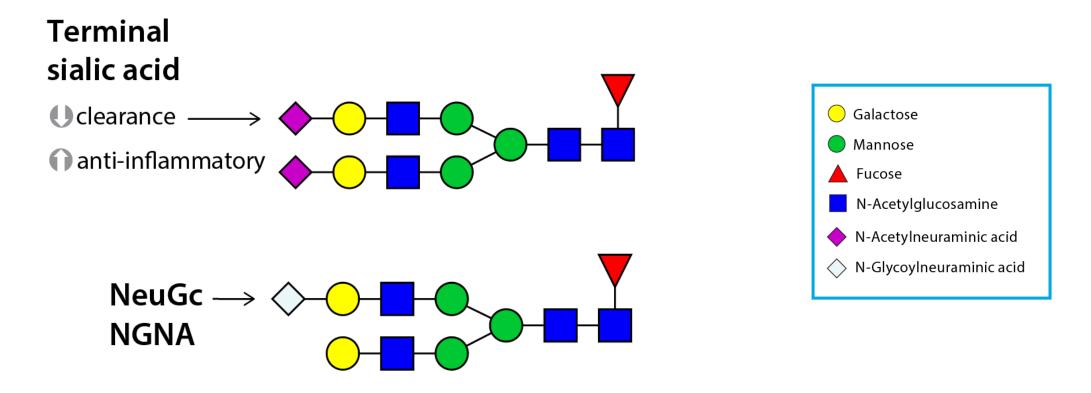
MabThera APTS-labeled N-glycans:

A) PA800 plus (CE)

Development of a Rapid APTS Sample Preparation Workflow for N-Glycan Release and Labeling <u>5994-0994EN</u>

APTS N-Glycan Standards & Libraries

Individual N-Glycans

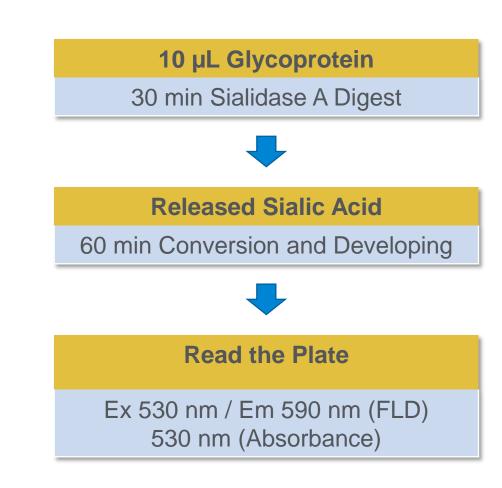

Product Code	Description			
GKSP-401	G0-N	8-{ <mark>0</mark> >-8-8		
GKSP-301	G0	80 0 88		
GKSP-402	G0F-N	■{ <mark>®®■</mark>		
GKSP-302	GOF	₽ ∞∎∎		
GKSP-317	G1	⊷{∎≎∞∎∎		
GKSP-316	G1F	°-∥∎≎∞∎∎		
GKSP-304	G2	080 080		
GKSP-305	G2F	8800 B		
GKSP-318	NA2Ga2F	00000 Y		

Product Code	Description
GKSP-311	A1 (α2,6)
GKSP-315	A1F (α2,6)
GKSP-312	Α2 (α2,6)
GKSP-313	A2F (α2,6)
GKSP-103	Man5
GKSP-104	Man6
GKSP-105	Man7
GKSP-106	Man8
GKSP-107	Man9

N-Glycan Libraries

Product Code	Description				
GKSP-005	Human IgG N-Linked Glycan Library				
GKSP-520	Biantennary & High Mannose Partitioned Library				
GKSP-500	APTS Bracketing Standard (dp2 and dp15)				
GKSP-503	APTS Maltodextrin Ladder				
GKSP-232	α(2-3) Sialylated Biantennary Library				
GKSP-262	α(2-6) Sialylated Biantennary Library				
GKSP-233	α(2-3) Sialylated Triantennary Library				
GKSP-263	α(2-6) Sialylated Triantennary Library				
GKSP-234	α(2-3) Sialylated Tetraantennary Library				
GKSP-264	α(2-6) Sialylated Tetraantennary Library				

Importance of Sialic Acid on Biotherapeutics



N-glycolyneuraminic acid (NeuGc/NGNA): Potentially immunogenic

Total Sialic Acid Quantitation

- Plate-based assay (GS48-SAQ, GS96-SAQ)
- Rapid quantitation of total sialic acid released from intact proteins by sialidase A
- Fluorescence plate reader (absorbance an option, lower sensitivity)
- Broad range of detection: 40 1,000 pmol fluorescence, 500 – 4,000 pmol absorbance

N-Acetylneuraminic aldolase catalyzes the reversible reaction:

Sialic Acid - Mannosamine + Pyruvic Acid

Then pyruvate oxidase catalyzes the reaction:

Pyruvic Acid \rightarrow Acetylphosphate + H₂O₂

Finally, H_2O_2 forms a 1:1 complex with the Dye to form a fluorescent Reporter Dye that may be read by fluorescence or absorbance detection.

Dye + $H_2O_2 \rightarrow$ Reporter Dye

Total Sialic Acid Quantitation: Starting Concentrations and Amounts of Glycoprotein

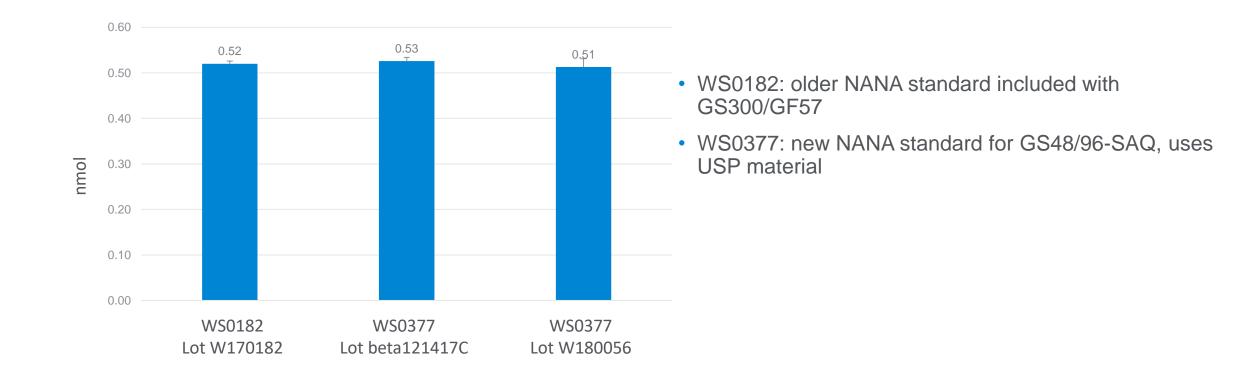
Glycoprotein	Concentration (mg/mL)	Sample volume (µL)	Sample mass (µg)	MW (kDa)	pmol protein
Fetuin	0.25	10	2.5	48	52
MabThera	10	10*	100	145	690
Enbrel	0.25	10	2.5	150	16.7
Zaltrap	0.5	10	5	115	43
Orencia	0.5	10	5	92	54
EPO alfa	1	10	10	30.4	329

*For glycoproteins with lower sialylation such as monoclonal antibodies, up to 30 μ L sample may be used with the kit.

Intra-Assay Repeatability

- Single operator, 3 replicates per sample
- SA sialic acid

	Fetuin	MabThera	Enbrel	Zaltrap	Orencia	EPO alfa
Starting concentration (mg/mL)	0.25	10	0.25	0.5	0.5	1
MW (kDa)	48	145	150	115	92	30.4
nmol SA/10 µL sample	0.58	0.08	0.55	0.45	0.59	0.16
nmol SA/mg protein	232.53	0.79	220.93	90.27	117.27	15.50
mol SA/mol protein	11.16	0.11	33.14	10.38	10.79	0.47
%CV (n=3)	0.55%	2.65%	1.81%	0.46%	0.60%	3.59%
SD (mol SA/mol protein)	0.06	0.00	0.60	0.05	0.06	0.02


Operator to Operator Repeatability

- 6 operators
- Samples: Fetuin, Enbrel, Orencia, Zaltrap, MabThera, EPO alfa
- 3 replicates per sample

	Fetuin	MabThera	Enbrel	Zaltrap	Orencia	EPO alfa
Operator 1	11.35	0.18	33.24	11.41	10.56	0.45
Operator 2	11.16	0.11	33.14	10.38	10.79	0.47
Operator 3	12.07	0.18	35.58	12.65	11.52	0.49
Operator 4	10.34	0.17	33.76	10.92	11.17	0.49
Operator 5	12.08	0.16	33.20	9.91	9.50	0.46
Operator 6	10.44	0.17	31.66	9.74	10.32	0.45
Average mol SA/mol protein	11.24	0.16	33.43	10.83	10.64	0.47
%CV (n=6)	6.72%	15.28%	3.79%	10.03%	6.63%	3.86%
SD	0.76	0.02	0.02	0.71	1.09	1.27

100 µM Sialic Acid Standard Lot Comparison (target 0.5 nmol)

Summary

Gly-X: rapid, simple, automatable sample preparation for N-glycan analysis Choice of dyes:

- InstantPC (LC/FLD/MS): >1 hour
- 2-AB Express (LC/FLD/MS): 2 hours
- APTS Express (for open platform CE) : 2 hours

AdvanceBio Glycan Mapping columns for HILIC separation

Fluorescence detection for relative % area quantitation

MS detection for the assignment of glycan structures to peaks

Sialic acid quantitation:

• Total sialic acid quantitation (SAQ), plate based

Collaboration

Talk to us about:

- N-Glycan sample prep
- Glycan standards
- Endoglycosidases & Exoglycosidases
- Sialic acid quantitation
- Streptavidin and phycobiliproteins
- Analytical services

Product demos

Beta testing

New technologies

Acknowledgements

Agilent, Hayward CA (formerly ProZyme)

Hamutal Bonen Archana Datt Anna Fong Ace G. Galermo Ted Haxo Justin Hyche Aled Jones Tom Mannion Steve Mast Bethan Morgan Shiva Pourkaveh Marco Rhotert Tom Rice **Jim Torrence** Sergey Vlasenko

Agilent Technologies Little Falls DE and Santa Clara CA

Anne Blackwell Linda Lloyd Oscar Potter Suma Ramagiri Greg Staples

