LCMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike

Improved HPAE-PAD method for determination of saccharides in atmospheric aerosol samples

Applications | 2023 | Thermo Fisher ScientificInstrumentation
Ion chromatography
Industries
Environmental
Manufacturer
Thermo Fisher Scientific

Summary

Importance of the Topic


Biomass burning releases significant amounts of water-soluble organic carbon (WSOC) into the atmosphere, impacting air quality, human health, and climate. Saccharides such as anhydrosugars (levoglucosan, mannosan, galactosan), sugar alcohols, monosaccharides, and disaccharides serve as specific tracers to distinguish biomass burning sources from biogenic detritus. Rapid and accurate quantification of these markers in atmospheric aerosols is crucial for source apportionment and environmental monitoring.

Goals and Study Overview


This work aimed to develop a single-column HPAE-PAD method capable of separating and quantifying twelve saccharides in atmospheric aerosol samples within 20 minutes, without chemical derivatization.

Methodology and Instrumentation


  • Chromatographic system: Thermo Scientific Dionex Integrion HPIC with electrochemical detection, controlled by Chromeleon™ CDS.
  • Column: Dionex CarboPac PA300-4 µm (2 × 250 mm) with guard cartridge.
  • Eluent: Electrolytically generated 15 mM KOH, flow rate 0.275 mL/min, column temperature 30 °C.
  • Electrochemical cell: Gold working electrode on PTFE; Ag/AgCl reference electrode.
  • Sample preparation: Passive diffusion on GF/A filters, sonication extraction; simulated matrix spiked with known saccharide levels.
  • Calibration: Standards from 0.025 to 20 mg/L; linearity tested from 0.05–25 mg/L.
  • Robustness testing: ±10% variations in flow rate, eluent concentration, and temperature; assessment of retention time, peak asymmetry, and resolution.

Main Results and Discussion


  • Separation of twelve saccharides completed in under 20 min, with minimum resolution of 1.77 (mannitol/mannosan).
  • Precision: RT RSD ≤ 0.6%, peak area RSD ≤ 3.6% (n = 3).
  • Linearity: r² between 0.991 and 0.999 across each analyte’s range.
  • Accuracy: Recoveries of 80–110% at 0.5 and 5 mg/L spike levels.
  • Robustness: Method tolerant to minor parameter changes; fructose/sucrose resolution sensitive to an “oxygen dip” in baseline, adjustable by temperature or eluent concentration.

Benefits and Practical Applications


  • Single-column, underivatized workflow reduces run time and complexity versus multi-column methods.
  • Electrolytic eluent generation automates reagent delivery and minimizes waste.
  • Rapid, reliable quantification supports routine aerosol monitoring in environmental research, QA/QC, and regulatory studies.

Future Trends and Opportunities


  • Coupling HPAE-PAD with high-resolution mass spectrometry for broader WSOC profiling.
  • Development of portable, field-deployed systems for near real-time aerosol analysis.
  • Application of machine learning to saccharide marker datasets for advanced source apportionment.
  • Extension of method to other polar organic tracers in atmospheric and environmental matrices.

Conclusion


The optimized HPAE-PAD method on a single CarboPac PA300-4 µm column enables fast, accurate, and robust separation of twelve key atmospheric saccharides in under 20 minutes. It offers excellent precision, linearity, and accuracy while simplifying the analytical workflow and reducing solvent consumption, making it ideal for routine environmental monitoring.

References


  1. Simoneit B.R.T. et al. Environ. Sci. Technol., 38, 5939–5949 (2004).
  2. Yttri K.E. et al. Atmos. Chem. Phys., 7, 4267–4279 (2007).
  3. Medeiros P.M. et al. Atmos. Environ., 40, 1694–1705 (2006).
  4. Elbert W. et al. Atmos. Chem. Phys., 7, 4569–4588 (2007).
  5. Tominaga S. et al. Atmos. Environ., 45, 2335–2339 (2011).
  6. Fu P.Q. & Kawamura K. Biogeosciences, 10, 653–667 (2013).
  7. Linuma Y. et al. Atmos. Environ., 43, 1367–1371 (2009).
  8. Barbaro E. et al. Atmos. Environ., 118, 135–144 (2015).
  9. Engling G. et al. Atmos. Environ., 40 (Suppl. 2), 299–311 (2006).
  10. Caseiro A. et al. J. Chromatogr. A, 1171, 37–45 (2007).
  11. Zhang Z. et al. Atmos. Environ., 102, 290–301 (2015).
  12. Yttri K.E. et al. Atmos. Meas. Tech. Discuss., 7, 125–147 (2014).
  13. Nouara A. et al. Mar. Chem., 213, 24–32 (2019).
  14. Thermo Fisher Scientific Application Note AN73009 (2022).

Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.

Downloadable PDF for viewing
 

Similar PDF

Toggle
An HPAE-PAD method for determination of saccharides in atmospheric aerosol samples
APPLICATION NOTE 73009 An HPAE-PAD method for determination of saccharides in atmospheric aerosol samples Authors Sachin Patil and Jeffrey Rohrer Thermo Fisher Scientific, Sunnyvale, CA Keywords Anhydro sugars, CarboPac MA1 column, levoglucosan, mannosan, galactosan, wood burning Goal To describe a…
Key words
mannosan, mannosanlevoglucosan, levoglucosangalactosan, galactosanmannitol, mannitolerythritol, erythritolarabitol, arabitolaerosol, aerosolmannose, mannosenaoh, naohgalactose, galactosexylitol, xylitolfructose, fructoseglucose, glucosesucrose, sucrosesaccharides
Fast determination of biofuel sugars by HPAE-PAD
Fast determination of biofuel sugars by HPAE-PAD
2018|Thermo Fisher Scientific|Applications
APPLICATION NOTE 72210 Fast determination of biofuel sugars by HPAE-PAD Authors Goal Sachin Patil , Akash Narani , Phillip Coffman2, Todd Pray2, Deepti Tanjore2, and Jeffrey Rohrer1 1 Thermo Fisher Scientific, Sunnyvale, CA; 2 Advanced Biofuels Process Demonstration Unit (AB…
Key words
biomass, biomassxylose, xylosearabinose, arabinosesugars, sugarsfructose, fructosegalactose, galactoseglucose, glucosedionex, dionexfru, fruxyl, xylmannose, mannosebiofuel, biofuelara, arasuc, sucfuc
Metrosep Carb 2
Metrosep Carb 2
2016|Metrohm|Brochures and specifications
Metrosep Carb 2 Carbohydrate separation column for ion chromatography Carbohydrate analysis with the Metrosep Carb 2 separation column 02 Metrohm is continually expanding its own range of co­­ lumns and improving existing separation column types using state-of-the-art manufacturing processes and…
Key words
carbohydrate, carbohydratelevoglucosan, levoglucosaninline, inlinedialysis, dialysismodifiers, modifierseluent, eluentco­­, co­­avail­, avail­current, currentglucose, glucoselumns, lumnsgalactosan, galactosanmannosan, mannosansystempeak, systempeakmaximum
The determination of carbohydrates, alcohols, and glycols in fermentation broths
APPLICATION NOTE 122 The determination of carbohydrates, alcohols, and glycols in fermentation broths Authors Valoran Hanko and Jeffrey S. Rohrer Thermo Fisher Scientific, Sunnyvale, CA, USA Keywords Dionex CarboPac MA1 column, Dionex CarboPac PA1 column, pulsed amperometric detection, PAD, high-performance…
Key words
fermentation, fermentationglycerol, glycerolerythritol, erythritolraffinose, raffinoserhamnose, rhamnosebroth, brothbroths, brothsarabinose, arabinosearabitol, arabitolgalactitol, galactitolsorbitol, sorbitolglucose, glucoselactose, lactoseribose, ribosegalactose
Other projects
GCMS
ICPMS
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike