LCMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike

Multiple Analytical Techniques For Carotenoid Analysis In Capsicum Cultivars

Technical notes | 2023 | ShimadzuInstrumentation
Sample Preparation, HPLC, LC/TOF, LC/MS, LC/MS/MS, LC/QQQ, SFC, LC/IT
Industries
Food & Agriculture
Manufacturer
Shimadzu

Summary

Importance of the Topic


Carotenoids are essential natural pigments and antioxidants with complex structural diversity, including free and esterified forms. Precise profiling of these compounds is critical for food quality control, nutritional evaluation, authenticity verification, and assessment of crop ripeness and oxidative stability.

Objectives and Study Overview


This study compares and develops three advanced analytical platforms for the direct analysis of native carotenoids in Capsicum cultivars, avoiding saponification: 1) an on-line supercritical fluid extraction–supercritical fluid chromatography–mass spectrometry (SFE-SFC-MS) system, 2) reversed-phase HPLC with serially coupled C30 columns, and 3) innovative normal-phase×reversed-phase two-dimensional (NP-LC×RP-LC and NP-LC×UHPRP-LC) separations.

Methodology and Instrumentation


Three complementary approaches were implemented:
  • SFE-SFC-MS: Shimadzu Nexera UC with SFE-30A extraction vessel, CO₂/methanol gradient, Core‐Shell C30 SFC column, APCI-triple quadrupole mass spectrometer (positive/negative modes, MRM).
  • RP-HPLC: Shimadzu HPLC with two serial YMC C30 reversed-phase columns (250×4.6 mm, 5 µm), PDA detection at 450 nm (250–600 nm full scan), APCI-APCI-MS.
  • NP-LC×RP-LC & NP-LC×UHPRP-LC: Shimadzu Nexera-e system with cyano 1D microbore column (250×1.0 mm, 5 µm), fused-core C18 2D column(s) (30×4.6 mm, 2.7 µm), two high-pressure six-port switching valves, PDA and IT-TOF MS (APCI) detection.


Main Results and Discussion


The SFE-SFC-MS workflow completed extraction and chromatographic separation in 18 min, identifying over 52 native carotenoids and chlorophyll derivatives, including mono- and di-acyl esters. The RP-HPLC method with serial C30 columns doubled peak capacity (from 73 to 95) and resolved critical isomeric pairs. The NP-LC×RP-LC system achieved a theoretical 2D peak capacity of 1395; its UHPLC-based variant with 1.00 min modulation afforded a practical peak capacity of 984, enabling separation of 33 carotenoids in 10 chemical classes (hydrocarbons, mono-ols, di-ols, epoxides, ketones, mono- and di-esters, and polyoxygenated xanthophylls).

Benefits and Practical Applications


These methods deliver rapid, high-precision, and low-contamination workflows for comprehensive carotenoid profiling in food matrices. They support quality assurance, authenticity testing, ripeness evaluation, and stability studies without laborious saponification steps.

Future Trends and Opportunities


Future developments may include integration with high-resolution mass spectrometry for structural elucidation, automated data processing using machine learning, expanded multidimensional separation strategies, enhanced reference libraries, and applications to broader biological and industrial samples.

Conclusion


A multimodal analytical strategy combining SFE-SFC, high-resolution RP-HPLC, and comprehensive LC×LC provides robust, high-throughput, and detailed characterization of native carotenoids in Capsicum, facilitating diverse research and industrial applications.

Reference


  1. Giuffrida D., Dugo P., Torre G., Bignardi C., Cavazza A., Corradini C., Dugo G. Food Chemistry 140 (2013) 794–802.
  2. Kopsell D.A., Kopsell D.E. In Bioactive Food in Promoting Health, Academic Press, London (2010) p. 645.
  3. Beutner S., Bloedorn B., Frixel S., Hernandez Blanco I., Hoffman T., Martin H.D., Mayer B., Noack P., Ruck C., Schmidt M., Schulke I., Sell S., Ernst H., Haremza S., Seybold G., Sies H., Stahl W., Walsh R. Journal of Science Food & Agriculture 81 (2001) 559–568.
  4. Minguez-Mosquera M.I., Hornero-Mendez D. Journal of Agricultural and Food Chemistry 42 (1994) 640–644.
  5. Hornero-Mendez D., Minguez-Mosquera M.I. Journal of Agricultural and Food Chemistry 48 (2000) 1617–1622.
  6. Schweiggert U., Kammerer D.R., Carle R., Schieber A. Rapid Communications in Mass Spectrometry 19 (2005) 2617–2628.
  7. Dugo P., Herrero M., Kumm T., Giuffrida D., Dugo G., Mondello L. Journal of Chromatography A 1189 (2008) 196.
  8. Dugo P., Herrero M., Giuffrida D., Kumm T., Dugo G., Mondello L. Journal of Agricultural and Food Chemistry 56 (2008) 3478.
  9. Dugo P., Skerikova V., Kumm T., Trozzi A., Jandera P., Mondello L. Analytical Chemistry 78 (2006) 7743.
  10. Dugo P., Cacciola F., Herrero M., Donato P., Mondello L. Journal of Separation Science 32 (2009) 973.
  11. Donato P., Dugo P., Cacciola F., Dugo G., Mondello L. Journal of Separation Science 32 (2009) 1129.
  12. Dugo P., Cacciola F., Donato P., Airado-Rodriguez D., Herrero M., Mondello L. Journal of Chromatography A 1216 (2009) 7483.
  13. Dugo P., Cacciola F., Donato P., Assis Jacques R., Carramao E.B., Mondello L. Journal of Chromatography A 1216 (2009) 7213.
  14. Philip T., Chen T.S., Gregory G.K. Journal of Food Science 52 (1987) 1071–1073.
  15. Sun T., Xu Z., Wu C.T., Janes M., Prinyawtwatkul W., No H.K. Journal of Food Science 72 (2007) S98–S102.
  16. de Azevedo-Meleiro C.H., Rodriguez-Amaya D.B. Journal of Separation Science 32 (2009) 3652–3658.
  17. Matsufuji H., Ishikawa K., Nunomura O., Chino M., Takeda M. International Journal of Food Science and Technology 42 (2007) 1482–1488.
  18. Guil-Guerrero J.L., Martinez-Guirado C., Rebelloso-Fuentes M., Carrique-Perez A. European Food Research and Technology 224 (2006) 1–9.
  19. Marin A., Ferreres F., Tomas-Barberan F.A., Gil M.I. Journal of Agricultural and Food Chemistry 52 (2004) 3861–3869.
  20. Neue U.W. Journal of Chromatography A 1079 (2005) 153.
  21. Gu H., Huang Y., Carr P.W. Journal of Chromatography A 1218 (2011) 64.
  22. Liu Z., Patterson D.G., Lee M.L. Analytical Chemistry 67 (1995) 3840.

Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.

Downloadable PDF for viewing
 

Similar PDF

Toggle
Characterization of 16 Capsicum Varieties by Evaluation of Their Carotenoid Profle by SFE-SFC-MS/MS
C190-E232 Technical Report Characterization of 16 Capsicum Varieties by Evaluation of Their Carotenoid Profile by SFE-SFC-MS/MS SFE-SFC-MS/MS analysis of carotenoids in Capsicum samples Zoccali Mariosimone1, Daniele Giuffrida1, and Luigi Mondello1 A b s tra c t: An on-line method based…
Key words
carotenoids, carotenoidssfe, sfesfc, sfccapsicum, capsicumsupercritical, supercriticalextraction, extractioncapsanthin, capsanthinfluid, fluidcryptoxanthin, cryptoxanthincarotene, carotenechlorophyll, chlorophyllbpr, bprreport, reportcaienna, caiennacapsorubin
On-line extraction and determination of targeted carotenoids from habanero red (Capsicum Chinese)
C190-E310 Technical Report On-line extraction and determination of targeted carotenoids from habanero red (Capsicum Chinese) SFE-SFC: sample preparation and measurement Mariosimone Zoccali1, Daniele Giuffrida1, Giorgia Purcaro1, and Luigi Mondello1 A b stra c t: The on-line coupling between supercritical fluid…
Key words
carotenoids, carotenoidsexpansion, expansionsupercritical, supercriticalzone, zonehabanero, habanerocapsanthin, capsanthinfluid, fluidcapsicum, capsicumzeaxanthin, zeaxanthincarotenoid, carotenoidlutein, luteinester, estersfe, sfesim, simacquired
Ultra high pressure comprehensive two-dimensional liquid chromatography combined with hybrid mass spectrometry for the elucidation of carotenoids in red chili peppers
PO-CON1230E Ultra high pressure comprehensive two-dimensional liquid chromatography combined with hybrid mass spectrometry for the elucidation of carotenoids in red chili peppers IMSC 2012 1 PWe-197 Marcus Mreyen, 2,3Francesco Cacciola, 3,4 Paola Donato, 5Daniele Giuffrida, 3Germana Torre, 3,4 Paola Dugo,…
Key words
elucidation, elucidationcarotenoids, carotenoidschili, chilipeppers, peppersred, redhybrid, hybriddimensional, dimensionalhigh, highcomprehensive, comprehensiveabundant, abundantcombined, combineddimension, dimensionmass, massultra, ultraspectrometry
Mass spectrometric elucidation of carotenoids in red chili peppers using high pressure comprehensive two-dimensional liquid chromatography
Mass spectrometric elucidation of carotenoids in red chili peppers using high pressure comprehensive two-dimensional liquid chromatography M. Mreyen1, F. Cacciola2,3, P. Donato4,3, D. Giuffrida3, G. Torre3, P. Dugo3,4, and L. Mondello3 1Shimadzu Europa GmbH, Duisburg, Germany; 2Chromaleont s.r.l. a spin-off…
Key words
elucidation, elucidationabundant, abundantcarotenoids, carotenoidschili, chilihigh, highstructure, structuremolecular, molecularsupression, supressionlcms, lcmsion, ionunravelling, unravellingfast, fastswitchover, switchoverwitnessed, witnessedfragmentation
Other projects
GCMS
ICPMS
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike