PFAS: Forever Chemicals in Soils
Technical notes | 2023 | ALS Europe | ALS Czech RepublicInstrumentation
Per- and polyfluoroalkyl substances (PFAS) are highly persistent chemicals widely detected in soils around the world. Their resistance to degradation and potential impacts on soil health, groundwater, surface water, and biota make understanding their occurrence and behavior in soil essential for environmental risk assessment and effective remediation strategies.
The 2023 monitoring study evaluated the presence and concentration of 20 PFAS compounds in 209 soil samples. These compounds align with regulatory requirements for drinking water monitoring. The primary goal was to determine the frequency of detection, concentration ranges, and compound profiles across various sampling locations.
Soil samples were prepared and analyzed according to a validated standard method (see Table 1 in the original study). Limits of quantification (LOQ) for target PFAS ranged from 0.5 to 5 µg/kg dry weight. Although the specific analytical platform was not detailed, typical workflows involve solid-phase extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to achieve low-level quantification.
Regular soil monitoring of PFAS supports:
Continued development and application of advanced analytical techniques will enhance detection limits, speed, and throughput. Integration of non-targeted screening and suspect screening workflows may uncover novel PFAS and transformation products. Coupling soil data with hydrological and atmospheric models will improve fate and transport predictions. Emerging in-situ remediation technologies, such as electrochemical oxidation or advanced bioremediation, offer promising avenues for PFAS removal from soils.
This study confirms that soils act as significant reservoirs for PFAS, with PFOS and PFOA dominating positive detections. The findings highlight the need for standardized soil monitoring protocols, refined risk assessment frameworks, and tailored remediation strategies to manage long-term environmental exposure to these persistent contaminants.
Laboratory analysis
IndustriesEnvironmental
ManufacturerSummary
Importance of the Topic
Per- and polyfluoroalkyl substances (PFAS) are highly persistent chemicals widely detected in soils around the world. Their resistance to degradation and potential impacts on soil health, groundwater, surface water, and biota make understanding their occurrence and behavior in soil essential for environmental risk assessment and effective remediation strategies.
Objectives and Study Overview
The 2023 monitoring study evaluated the presence and concentration of 20 PFAS compounds in 209 soil samples. These compounds align with regulatory requirements for drinking water monitoring. The primary goal was to determine the frequency of detection, concentration ranges, and compound profiles across various sampling locations.
Methodology and Instrumentation
Soil samples were prepared and analyzed according to a validated standard method (see Table 1 in the original study). Limits of quantification (LOQ) for target PFAS ranged from 0.5 to 5 µg/kg dry weight. Although the specific analytical platform was not detailed, typical workflows involve solid-phase extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to achieve low-level quantification.
Key Results and Discussion
- Approximately 30 % of samples contained PFAS above LOQ, while 70 % were non-detect for all analytes.
- PFOS and PFOA emerged as the most frequently detected and highest-concentration compounds.
- Long-chain PFAS such as PFDA, PFNA, and PFNS were commonly observed, indicating accumulation potential.
- Concentration levels of PFOS reached several µg/kg, significantly exceeding other analytes.
- Spatial variations in PFAS profiles reflected differences in local sources, including firefighting foams, industrial discharges, and atmospheric deposition.
Benefits and Practical Applications
Regular soil monitoring of PFAS supports:
- Accurate risk assessment for human health and ecosystems
- Evidence-based design of remediation and containment measures
- Compliance with emerging regulatory standards
- Identification of contamination hotspots to prioritize interventions
Future Trends and Opportunities
Continued development and application of advanced analytical techniques will enhance detection limits, speed, and throughput. Integration of non-targeted screening and suspect screening workflows may uncover novel PFAS and transformation products. Coupling soil data with hydrological and atmospheric models will improve fate and transport predictions. Emerging in-situ remediation technologies, such as electrochemical oxidation or advanced bioremediation, offer promising avenues for PFAS removal from soils.
Conclusion
This study confirms that soils act as significant reservoirs for PFAS, with PFOS and PFOA dominating positive detections. The findings highlight the need for standardized soil monitoring protocols, refined risk assessment frameworks, and tailored remediation strategies to manage long-term environmental exposure to these persistent contaminants.
References
- Y. Wang, U. Munir, Q. Huang. Occurrence of per- and polyfluoroalkyl substances (PFAS) in soil: Sources, fate, and remediation. 2023. https://doi.org/10.1016/j.seh.2023.100004
- M. L. Brusseau, R. H. Anderson, B. Guo. PFAS Concentrations in Soils: Background Levels versus Contaminated Sites. 2020. doi: 10.1016/j.scitotenv.2020.140017
- DIRECTIVE (EU) 2020/2184 on the quality of water intended for human consumption. 2020.
Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.
Similar PDF
PFAS Testing in Waters: The Scope of Analyses and Current State of Legislation
2023||Technical notes
EnviroMail™ / Europe Issue 1 / May 2023 PFAS Testing in Waters: The Scope of Analyses and Current State of Legislation ALS Czech Republic laboratories have again expanded the list of accredited analyses for the determination of PFAS. Persistence and…
Key words
sulfonic, sulfonicacid, acidperfluorooctane, perfluorooctanepfas, pfassulfonamidoacetic, sulfonamidoaceticsulfonamide, sulfonamideperfluorinated, perfluorinatedmember, membersulfonamidoethanol, sulfonamidoethanolacids, acidspfos, pfoslegislation, legislationstates, statesethyl, ethylmethyl
EnviroMail™ / Europe No. 30 / January 2026 PFAS in Biota: Risk Context & Robust Analytical Solutions The analysis of biota (all living organisms) as an indicator of environmental pollution is a fundamental practice known as biomonitoring or bioindication. This…
Key words
sulfonic, sulfonicpfas, pfasacid, acidbiota, biotaperfluoroalkyl, perfluoroalkylpfos, pfoslink, linkbioaccumulation, bioaccumulationperfluorooctane, perfluorooctanecontaminate, contaminateorganisms, organismscontinues, continuesbioaccumulators, bioaccumulatorspfoa, pfoaacids
Development and Optimization for a Comprehensive LC/MS/MS Method for the Detection of 74 PFAS Compounds
2026|Agilent Technologies|Applications
Application Note Food and Beverage Testing Development and Optimization for a Comprehensive LC/MS/MS Method for the Detection of 74 PFAS Compounds Authors Abstract Emily Parry and Rachael Ciotti Agilent Technologies, Inc. Per- and polyfluoroalkyl substances (PFAS) are persistent environmental and…
Key words
wellington, wellingtonpfca, pfcatrc, trcpfsa, pfsalgc, lgcaccustandard, accustandardperfluoro, perfluorofasa, fasaacid, acidftca, ftcaftsa, ftsapfas, pfaspfeca, pfecaftuca, ftucapap
Product Catalogue ALS EUROPE (SOIL/SLUDGE/SEDIMENT)
||Brochures and specifications
SOIL/SLUDGE/SEDIMENT Product Catalogue ALS EUROPE Right Solutions • Right Partner www.alsglobal.eu CONTENTS Indicator and inorganic parameters ������������������������������������������������������������������������������������������������������������������������������������������������������� 7 Total grain size analysis �������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 7 Microbiological parameters �������������������������������������������������������������������������������������������������������������������������������������������������������������������� 8 Elemental analysis - N, C, H, S ��������������������������������������������������������������������������������������������������������������������������������������������������������������� 8 Metals (group 1) �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 8 Metals (group 2) ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������…
Key words
loq, loqparameter, parametersediment, sedimenthomogenisation, homogenisationsludge, sludgecatalogue, catalogueright, righttoxicity, toxicityacute, acutefraction, fractionnonylphenol, nonylphenolsoil, soilpartner, partneracid, acidaliphatic