LCMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike

Platform Ion Pairing RPLC Method for Oligonucleotides Using High Throughput 20 mm Length Columns

Applications | 2024 | WatersInstrumentation
Consumables, LC columns, HPLC
Industries
Pharma & Biopharma
Manufacturer
Waters

Summary

Significance of the Topic


Ion-pair reverse-phase liquid chromatography (IP-RPLC) is a cornerstone analytical technique for oligonucleotide characterization, offering superior resolution and compatibility with LC-MS. As oligonucleotide-based therapeutics and diagnostics proliferate, rapid and robust separation methods are essential for quality control and method development.

Study Objectives and Overview


This work proposes a generic platform method using ultra-short ACQUITY™ Premier Oligonucleotide BEH™ C18 columns (2.1×20 mm, 1.7 µm) to separate size variants of oligonucleotides (10–100-mers) in under three minutes. The authors apply a non-linear (logarithmic-like) gradient to achieve uniform selectivity across homologous series.

Methodology and Instrumentation


  • System: ACQUITY UPLC™ H-Class Bio with Binary Solvent Manager or equivalent Premier system.
  • Detection: UV at 260 nm.
  • Column: ACQUITY Premier Oligonucleotide BEH C18, 300 Å, 1.7 µm, 2.1×20 mm at 70 °C.
  • Mobile phases: 100 mM HFIP + 10 mM DIPEA in water (A) and in 1:1 MeCN:water (B), pH ∼8.4.
  • Flow rates: 0.8 mL/min (3 min gradient) or 1.5 mL/min (1.33 min gradient).
  • Sample: Oligo dT and ssDNA ladders (10–100-mer).

Main Results and Discussion


1. Column length effect: Modeling and experiments show that a 20 mm column matches the separation power of a 150 mm column for oligonucleotides, with a 7.5× reduction in analysis time and minimal resolution loss.
2. Ion-pair reagent comparison: Four IP systems (TEA, DIPEA, hexylamine, octylamine) display logarithmic retention vs. chain length (“homologue rule”). Stronger hydrophobic reagents increase absolute retention but do not alter relative selectivity; choice depends on LC-MS compatibility and sequence vs. size separation.
3. Platform gradient design: A logarithmic-like (concave) multi-segment gradient derived from inverse retention modeling yields uniform peak spacing for 10–100-mer mixtures. A 3–5 segment approximation enables 1–3 minute separations with high resolution.

Benefits and Practical Applications


  • Ultra-fast run times (1–3 min) accelerate routine QC and high-throughput workflows.
  • Adjustable non-linear gradients maximize selectivity across broad size ranges.
  • Short columns reduce solvent consumption and instrument wear without sacrificing performance.

Future Trends and Applications


• Integration with LC-MS for direct mass confirmation of oligonucleotide species.
• Automated gradient optimization tools to further streamline method development.
• Extension to modified and conjugated oligonucleotides and other large biomolecules.

Conclusion


By exploiting the on-off elution mechanism of oligonucleotides and applying logarithmic-like gradients on ultra-short columns, this platform method achieves rapid, high-resolution separations of 10–100-mers. The approach supports routine QC, method development, and high-throughput analysis in academic and industrial laboratories.

References


  1. Donegan M, Nguyen JM, Gilar M. Effect of ion-pairing reagent hydrophobicity on liquid chromatography and mass spectrometry analysis of oligonucleotides. J Chromatogr A. 2022;1666:462860.
  2. Packer M, Gyawali D, Yerabolu R, Schariter J, White P. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat Commun. 2021;12:6777.
  3. Levin DS, Shepperd BT, Gruenloh CJ. Combining ion pairing agents for enhanced analysis of oligonucleotide therapeutics by UPLC. J Chromatogr B. 2011;879:1587–1595.
  4. Lardeux H, Fekete S, Lauber M, D’Atri V, Guillarme D. High-throughput chromatographic separation of oligonucleotides: A proof of concept using ultra-short columns. Anal Chem. 2023;95:10448–10456.
  5. Horváth Cs, Melander W, Molnár I. Solvophobic interactions in liquid chromatography with nonpolar stationary phases. J Chromatogr. 1976;125:129–156.
  6. Drager RR, Regnier FE. Application of the stoichiometric displacement model of retention to anion-exchange chromatography of nucleic acids. J Chromatogr A. 1986;359:147–155.
  7. Bobály B, Randazzo GM, Rudaz S, Guillarme D, Fekete S. Optimization of non-linear gradient in hydrophobic interaction chromatography for analytical characterization of ADCs. J Chromatogr A. 2017;1481:82–91.
  8. Fekete S, Murisier A, Lauber M, Guillarme D. Empirical correction of non-linear pH gradients in protein ion exchange chromatography. J Chromatogr A. 2021;1651:462320.
  9. Cusumano A, Guillarme D, Beck A, Fekete S. Practical method development for mAb and ADC HIC separations, part 2. J Pharm Biomed Anal. 2016;121:161–173.
  10. Fekete S, Bobály B, Nguyen JM, Beck A, Veuthey JL, Wyndham K, Lauber M, Guillarme D. Use of ultrashort columns for therapeutic protein separations. Part 1: Theory and proof of concept. Anal Chem. 2021;93:1277–1284.
  11. Fekete S, Lauber M. Studying effective column lengths in LC of large biomolecules. J Chromatogr A. 2023;1692:463848.
  12. Roussis SG, Pearce M, Rentel C. Small alkyl amines as ion-pair reagents for positional isomers in oligonucleotides. J Chromatogr A. 2019;1594:105–111.
  13. Fountain KJ, Gilar M, Budman Y, Gebler JC. Purification of dye-labeled oligonucleotides by IP-RPLC. J Chromatogr B. 2003;783:61–72.
  14. Jandera P. Simultaneous optimization of gradient time, shape and initial composition in HPLC of homologous series. J Chromatogr A. 1999;845:133–144.
  15. Wei Y, Yao C, Zhao J, Geng X. Influence of mobile phase composition and temperature on retention of aromatic alcohol homologues in HIC. Chromatographia. 2002;55:659–665.
  16. Peris-Garcia E, Ubeda-Torres MT, Ruiz-Angel MJ, Garcia-Alvarez-Coque MC. Effect of SDS and Brij-35 on sulphonamide analysis by direct injection and ACN gradients. Anal Methods. 2016;8:3941–3952.

Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.

Downloadable PDF for viewing
 

Similar PDF

Toggle
Enhanced Resolution for Longer Oligonucleotide Analytes With a MaxPeak™ Premier Oligonucleotide BEH C18 300 Å Column
Application Note Enhanced Resolution for Longer Oligonucleotide Analytes With a MaxPeak™ Premier Oligonucleotide BEH C18 300 Å Column Balasubrahmanyam Addepalli, Makda Araya, Matthew A. Lauber Waters Corporation Abstract Ion-pairing reversed phase liquid chromatography is widely used to characterize the identity,…
Key words
column, columnoligonucleotides, oligonucleotidesbioaccord, bioaccordoligonucleotide, oligonucleotideacquity, acquitybsm, bsmlonger, longertuv, tuvdiagnostics, diagnosticsrestricted, restrictedsystem, systemmilli, millipremier, premierimpeding, impedingintraparticle
Entire Workflow from Dissolution Sampling, LIMS, HPLC Measurement to Result
An Introduction to Ion-Paired Reverse-Phase Oligonucleotide Separations: From Analysis to Purification Melissa Goodlad, PhD Columns and Supplies Applications Engineer April 15, 2025 1 April 15, 2025 An Introduction to Ion-Paired Reverse-Phase Oligonucleotide Separations DE-006001 Introduction to Ion-Paired Reverse-Phase (IP-RP) Separations…
Key words
oligonucleotide, oligonucleotidepaired, pairedreverse, reverseseparations, separationsion, ionphase, phaseintroduction, introductioncolumn, columnoptimization, optimizationmethod, methodprep, preppurification, purificationpairing, pairingselection, selectionobjectives
An Introduction to Ion-Paired Reverse-Phase Oligonucleotide Separations: From Analysis to Purification
An Introduction to Ion-Paired Reverse-Phase Oligonucleotide Separations: From Analysis to Purification Melissa Goodlad, PhD Columns and Supplies Applications Engineer April 15, 2025 1 April 15, 2025 An Introduction to Ion-Paired Reverse-Phase Oligonucleotide Separations DE-006001 Introduction to Ion-Paired Reverse-Phase (IP-RP) Separations…
Key words
oligonucleotide, oligonucleotidepaired, pairedreverse, reverseseparations, separationsion, ionphase, phaseintroduction, introductioncolumn, columnoptimization, optimizationmethod, methodprep, preppurification, purificationpairing, pairingselection, selectionobjectives
APPLICATION SOLUTIONS FOR OLIGONUCLEOTIDES - APPLICATION NOTEBOOK
[ APPLICATION NOTEBOOK ] APPLICATION SOLUTIONS FOR OLIGONUCLEOTIDES Table of Contents Introduction – UPLC Analysis of Synthetic Oligonucleotides......................................................................................................................... 4 [ HPLC & UPLC Separations ] Real-Time Analysis of RNAi Duplexes ....................................................................................................................................................................... 8 Semi-Preparative Scale Single-Stranded RNA Purification .......................................................................................................................... 11 Oligonucleotide…
Key words
oligonucleotides, oligonucleotidesuplc, uplcoligonucleotide, oligonucleotideacquity, acquityrnai, rnaiost, ostpromass, promassduplex, duplexwaters, watersduplexes, duplexessirna, sirnaqda, qdaanalysis, analysisrna, rnaseparation
Other projects
GCMS
ICPMS
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike