LCMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike

PL9008: Key publications on the characterization of gene vectors by light scattering

Others |  | Wyatt Technology | WatersInstrumentation
GPC/SEC
Industries
Manufacturer
Waters

Summary

Significance of the Topic


Light scattering–based hyphenated techniques are indispensable for reliable characterization of gene delivery nanoparticles. They deliver rapid, label-free insights into particle size, heterogeneity, composition and aggregation. This information underpins quality control, process development and regulatory compliance in gene therapy, vaccine production and nanomedicine formulation.

Objectives and Overview


This collection of key publications demonstrates how high-throughput dynamic light scattering (HT-DLS), size-exclusion chromatography with multi-angle light scattering (SEC-MALS), ion-exchange chromatography with MALS (IEX-MALS) and asymmetrical-flow field-flow fractionation with MALS (FFF-MALS) have been applied to characterize viral vectors, lipid nanoparticles, polymeric carriers and extracellular vesicles. The primary goals include quantifying particle size distribution, determining cargo loading (e.g., capsid content, RNA), and optimizing formulation processes.

Methodology and Instrumentation


All studies combine light scattering detectors with separation or high-throughput platforms:
  • HT-DLS platforms for rapid size profiling of formulation libraries.
  • SEC-MALS and IEX-MALS to resolve size fractions and measure molecular weight and particle concentration.
  • FFF-MALS for separation of particle subpopulations based on hydrodynamic size without a stationary phase.
  • Dynamic/static light scattering (DLS/SLS) for complementary size and surface charge measurements.

Key Results and Discussion


Viral vectors studies established robust methods for capsid fill-state quantification and size distribution of AAV and VLPs. SEC-MALS and IEX-MALS enabled differentiation of empty and full capsids.
FFF-MALS facilitated single-particle analysis of virions and assessment of assembly efficiency.
Lipid nanoparticle research linked particle size to immunogenicity, provided high-throughput screening of oligonucleotide-loaded LNPs, and demonstrated online determination of RNA loading.
Polymeric nanoparticle work used SEC-MALS to determine polymer molecular weight and correlate it with siRNA delivery efficacy.
Extracellular vesicle investigations applied HT-DLS for plasma exosome profiling and FFF-MALS for separation of exomeres and small EV subtypes, revealing distinct biophysical signatures.

Benefits and Practical Applications


  • Non-invasive, label-free quantification of particle size, mass and concentration.
  • High throughput screening expedites formulation development.
  • Separation-coupled detection resolves complex mixtures into subpopulations.
  • Real-time monitoring supports process analytical technology (PAT) in biomanufacturing.

Future Trends and Possibilities


Integration of microfluidic fractionation, real-time in-line detectors, and machine-learning algorithms promises more predictive and automated nanoparticle characterization. Standardized protocols for regulatory approval will emerge. Advanced multi-detector platforms may expand to novel carriers such as exomeres and multifunctional nanomedicines.

Conclusion


Light scattering–based hyphenated techniques are central to the analytical toolbox for gene delivery systems. They offer quantitative, high-resolution insights that drive formulation optimization, quality control, and innovation in nanomedicine.

Reference

  • Dashti, N.H.; Sainsbury, F. Protein Nanotechnology. Humana, New York, NY (2020). DOI:10.1007/978-1-4939-9869-2_9.
  • Mohr, J. et al. Virus-like particle formulation optimization by miniaturized high-throughput screening. Methods 60(3), 248–256 (2013). DOI:10.1016/j.ymeth.2013.04.019.
  • McIntosh, N.L. et al. Comprehensive characterization and quantification of adeno-associated vectors by SEC-MALS. Scientific Reports 11:3012 (2021). DOI:10.1038/s41598-021-82599-1.
  • Wagner, C. et al. Biophysical characterization of adeno-associated virus vectors using IEX-MALS. Int. J. Mol. Sci. 23(21), 12715 (2022). DOI:10.3390/ijms232112715.
  • Heider, S.; Metzner, C. Quantitative real-time single particle analysis of virions by FFF-MALS. Virology 462, 199–206 (2014). DOI:10.1016/j.virol.2014.06.005.
  • Chuan, Y.P. et al. Quantitative analysis of virus-like particle size by FFF. Biotechnol. Bioeng. 99(6), 1425–1433 (2008). DOI:10.1002/bit.21710.
  • Citkowicz, A. et al. Characterization of virus-like particle assembly for DNA delivery using AF4 and light scattering. Anal. Biochem. 376(2), 163–172 (2008). DOI:10.1016/j.ab.2008.02.011.
  • Werle, A.K. et al. Comparison of analytical techniques to quantify capsid content of AAV vectors. Mol. Ther. Methods Clin. Dev. 23 (2021). DOI:10.1016/j.omtm.2021.08.009.
  • Selveraj, N. et al. Protocol for scalable AAV upstream process. Hum. Gene Ther. 32 (2021). DOI:10.1089/hum.2020.054.
  • Yuchen, F. et al. Automated HT preparation and characterization of oligonucleotide LNPs. Int. J. Pharm. 599, 120392 (2021). DOI:10.1016/j.ijpharm.2021.120392.
  • Hassett, K.J. et al. Impact of LNP size on mRNA vaccine immunogenicity. J. Controlled Release 335, 237–246 (2021). DOI:10.1016/j.jconrel.2021.05.021.
  • Nogueira, S.S. et al. Polysarcosine-functionalized LNPs for therapeutic mRNA. ACS Appl. Nano Mater. 3(11), 10634–10645 (2020). DOI:10.1021/acsanm.0c01834.
  • Sago, C.D. et al. High-throughput in vivo screen identifies endothelial gene-editing nanoparticles. PNAS 115(48) (2018). DOI:10.1073/pnas.1811276115.
  • Zhang, J. et al. Polydispersity characterization of LNPs for siRNA delivery by multi-detection SEC. Anal. Chem. 84(14), 6088–6096 (2012). DOI:10.1021/ac3007768.
  • Krivitsky, A. et al. Molecular weight-dependent activity of aminated poly(α)glutamates as siRNA nanocarriers. Polymers 10(5), 548 (2018). DOI:10.3390/polym10050548.
  • Jia, X. et al. Online determination of size-dependent RNA content of LNP formulations. J. Chromatogr. B 1186, 123015 (2021). DOI:10.1016/j.jchromb.2021.123015.
  • Mildner, R. et al. Improved AF4 method for lipid nanocarrier sizing and concentration. Eur. J. Pharm. Biopharm. 163, 252–265 (2021). DOI:10.1016/j.ejpb.2021.03.004.
  • Parot, J. et al. Physical characterization of liposomal formulations using AF4-MALS. J. Controlled Release 320, 495–510 (2020). DOI:10.1016/j.jconrel.2020.01.049.
  • Hupfeld, S. et al. Liposome size analysis by DLS/SLS upon SEC/FFF. J. Nanoscience Nanotechnology 6(9-10), 3025–3031 (2006). DOI:10.1166/jnn.2006.454.
  • Cho, H.Y. et al. Synthesis of PEG-based star polymers for siRNA delivery. Biomacromolecules 12(10), 3478–3486 (2011). DOI:10.1021/bm2006455.
  • Zhong, Z. et al. Plasma EV profiling by pluronic block-copolymer enrichment reveals cancer-related features. J. Extracell. Vesicles 7(1), 1458574 (2018).
  • Domenyuk, V. et al. Plasma exosome profiling of cancer patients by systems biology. Sci. Rep. 7, 42741 (2017). DOI:10.1038/srep42741.
  • Wu, B. et al. Separation and characterization of EVs from plasma by AF4-MALS. Anal. Chim. Acta 1127, 234–245 (2020). DOI:10.1016/j.aca.2020.06.071.
  • Kim, Y.B. et al. Evaluation of exosome separation by frit-inlet AF4 and MALS. Anal. Chim. Acta 1124, 137–145 (2020). DOI:10.1016/j.aca.2020.05.031.
  • Zhang, H.; Lyden, D. AF4 technology for exomere and small EV separation. Nat. Protoc. 14(4), 1027–1053 (2019). DOI:10.1038/s41596-019-0126-x.
  • Zhang, H. et al. Identification of distinct nanoparticles and EV subsets by AF4. Nat. Cell Biol. 20, 332–343 (2018). DOI:10.1038/s41556-018-0040-4.
  • Hu, Y. et al. Utility of AF4 for preclinical characterization of nanomedicines. Anal. Bioanal. Chem. 412(2), 425–438 (2020). DOI:10.1007/s00216-019-02252-9.

Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.

Downloadable PDF for viewing
 

Similar PDF

Toggle
Key publications on the characterization of nanoparticle drug and gene delivery systems by FFF-MALS-DLS
P U B L I C AT I O N L I S T PL2609: Key publications on the characterization of nanoparticle drug and gene delivery systems by FFF-MALS-DLS Summary • This document lists key publications using AF4- MALS-DLS for…
Key words
fractionation, fractionationfield, fieldflow, flowasymmetrical, asymmetricalcharacterization, characterizationasymmetric, asymmetricvirus, virusfieldflow, fieldflowscattering, scatteringexosomes, exosomesinfluenza, influenzasize, sizevesicles, vesicleslipid, lipidnanoparticles
PL9006: Key publications on the characterization of vaccines with multi-angle and dynamic light scattering
P U B L I C AT I O N L I S T PL9006: Key publications on the characterization of vaccines with multi-angle and dynamic light scattering Summary This document lists key publications using multi-angle and dynamic light scattering…
Key words
virus, virusvaccine, vaccineinfluenza, influenzascattering, scatteringfractionation, fractionationlike, likeparticle, particlevaccines, vaccinesangle, anglecharacterization, characterizationlight, lightimmunogenicity, immunogenicityasymmetrical, asymmetricalmeningococcal, meningococcalantigen
Meeting regulatory needs in the characterization of lipid nanoparticles (LNPs) for RNA delivery via FFF-MALS
W H I T E PA P E R WP2612: Meeting regulatory needs in the characterization of lipid nanoparticles (LNPs) for RNA delivery via FFF-MALS Fanny Caputo, Ph.D., SINTEF Industry and Christian Sieg, Ph.D., Waters | Wyatt Technology Abstract Field-flow…
Key words
fff, fffmals, malslnp, lnpparticle, particlechannel, channelradius, radiuslnps, lnpswyatt, wyattfractionation, fractionationnanocarriers, nanocarriersmrna, mrnaencapsulating, encapsulatingcharacterization, characterizationdls, dlsnanoparticles
Characterization of nanopharmaceuticals with field-flow fractionation and light scattering (FFF-MALS-DLS)
W H I T E PA P E R WP2611: Characterization of nanopharmaceuticals with field-flow fractionation and light scattering (FFF-MALS-DLS) Dan Some, Ph.D., and Christoph Johann, Ph.D., Waters | Wyatt Technology Introduction One of the primary challenges in developing effective…
Key words
fff, fffdls, dlsmals, malsfractionation, fractionationradius, radiusfield, fielddrug, drugflow, flowasymmetrical, asymmetricalnanoparticle, nanoparticlescattering, scatteringlight, lightmolar, molardetermine, determinesize
Other projects
GCMS
ICPMS
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike